小企业网站建设流程/桂平网络推广

小企业网站建设流程,桂平网络推广,个人网站内容,做阿里巴巴网站费用吗记录centerpoint学习笔记。目前被引用1275次,非常高。 地址:Center-Based 3D Object Detection and Tracking (thecvf.com) GitHub - tianweiy/CenterPoint CenterPoint:三维点云目标检测算法梳理及最新进展(CVPR2021&#xff…

记录centerpoint学习笔记。目前被引用1275次,非常高。

地址:Center-Based 3D Object Detection and Tracking (thecvf.com)

GitHub - tianweiy/CenterPoint

CenterPoint:三维点云目标检测算法梳理及最新进展(CVPR2021)_哔哩哔哩_bilibili 作者解释。

CenterPoint 是一种用于激光点云的3D目标检测与跟踪算法框架,由2021年CVPR论文《Center-based 3D Object Detection and Tracking》提出。与以往算法不同,CenterPoint使用关键点而不是边界框来表示、检测和跟踪3D目标。

具体来说,CenterPoint算法分为两个阶段:

  1. 第一阶段:使用关键点检测器检测目标的中心点,然后基于中心点特征回归出目标的3D尺寸、朝向和速度等属性。

  2. 第二阶段:基于目标额外的点特征,对第一阶段得到的属性进行优化

CenterPoint算法的优点包括简单高效,在nuScenes和Waymo数据集上都取得了state-of-the-art的性能表现。此外,目标跟踪被简化为一个简单的最近点匹配过程。

2D目标检测:

2D目标检测需要输出每个对象的类别(如人、车、猫等)以及一个包围框(bounding box),该包围框在图像中精确地定位了对象的位置。常见算法有基于区域提议(region proposal)的两阶段检测算法(如Faster R-CNN)和基于单阶段检测(one-stage detection)的算法(如YOLO、RetinaNet)

anchor

anchor(锚点)通常是指在目标检测任务中使用的一系列预定义的边界框(bounding boxes)。这些锚点具有不同的尺寸和宽高比,以覆盖图像中可能出现的各种形状和大小的目标。

锚点机制的工作流程如下:

  1. 在训练阶段,网络首先生成一系列锚点,这些锚点覆盖了图像中可能出现的各种形状和大小的目标。
  2. 然后,网络预测每个锚点内部是否包含一个目标,如果是,则进一步预测目标的类别和锚点需要调整的偏移量,以更好地匹配目标的真实边界框。
  3. 在推理阶段,网络使用这些锚点作为初始猜测,快速检测图像中的目标

缺点:不是end2end,需要nms后处理。

NMS

NMS(Non-Maximum Suppression,非极大值抑制)是一种在目标检测任务中常用的后处理步骤,用于去除冗余的检测边界框,确保每个目标只被检测一次。

NMS的主要步骤如下:

  1. 排序:首先,根据检测边界框的置信度(通常由检测算法给出)对所有边界框进行降序排序。

  2. 选择最高置信度的边界框:选择置信度最高的边界框作为当前考虑的边界框。

  3. 抑制与当前边界框高度重叠的边界框:计算当前边界框与其他所有边界框的交并比(IoU,Intersection over Union),如果IoU超过某个预定义的阈值(例如0.5),则将这些边界框抑制(即移除或忽略)。

  4. 重复步骤2和3:从剩余的边界框中选择置信度最高的边界框,重复步骤3,直到所有的边界框都被处理过。

  5. 输出最终检测结果:最后,剩下的边界框就是NMS处理后的检测结果,每个目标只被检测一次。

NMS在目标检测算法中起着关键作用,可以显著减少冗余的检测结果,提高检测的准确性和效率。然而,NMS也有一些局限性,例如可能会抑制一些具有高置信度但与当前边界框重叠的边界框,这可能导致一些真正的目标被遗漏。为了解决这个问题,研究者们提出了改进的NMS算法,如Soft-NMS、Softer-NMS等,它们通过更柔和的抑制策略来减少误抑制。

3D目标检测:

3D目标检测是计算机视觉领域的一项重要任务,其目标是在三维空间中检测和定位图像中的各种对象。与2D目标检测相比,3D目标检测不仅需要输出每个对象的类别和位置,还需要输出其在三维空间中的尺寸、方向和姿态等信息。

为了实现3D目标检测,研究者们提出了多种算法,包括基于深度学习的端到端检测算法和基于几何学的算法。近年来,基于深度学习的3D目标检测算法取得了显著的进展,特别是基于点云(如PointNet、PointNet++)和基于体素(如VoxelNet)的方法。

2D的预测:xy,wh(宽高),cls类别

3D的预测:xyz,lwh(长宽高),θ朝向角度,cls类别

pointnet

PointNet是一种用于点云处理的深度学习模型,由2017年CVPR论文《PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation》提出。该模型的主要思想是将点云数据作为输入,通过神经网络对其进行处理,以实现对点云数据的深度学习分析。

PointNet的关键创新点包括:

  1. 对称函数(Set Abstraction):为了处理点云的无序性,PointNet引入了对称函数,也称为集合函数。该操作将无序的点集表示为固定长度的向量。在PointNet中,集合函数的实现形式是基于最大池化(max)

  2. T-Net:为了获得点云的几何变换不变性,PointNet通过学习几何变换的参数,对点云数据进行对齐和变换。T-Net通过生成变换矩阵对原始点云数据进行变换,以更好地进行特征学习和提取。

  3. 多层感知器(MLP):PointNet使用多层感知器(MLP)对点云进行特征提取和分类/分割。

PointNet的主要应用包括:

  • 3D物体分类:给定N个3D的点云,通过PointNet进行分类。
  • 3D物体分割:对点云进行语义分割或实例分割。

PointNet的优势在于其简单高效的设计,能够直接处理点云数据,而无需将其转换为其他表示形式(如体素或网格)。这使得PointNet在基于点云的3D物体检测和分割任务中取得了当时最先进的性能。

voxelnet

VoxelNet是一种用于基于点云的3D物体检测的端到端学习框架,由2018年CVPR论文《VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection》提出。该框架的主要思想是将稀疏的点云数据转换成密集的体素表示,然后使用3D卷积网络进行特征提取和物体检测。

VoxelNet框架主要包括以下步骤:

  1. 点云预处理:将稀疏的点云数据转换成规则的体素网格表示。这一步通过将点云划分成规则的体素,并对每个体素内的点进行统计(如最大值、最小值、平均值等)来实现。

  2. 体素特征提取:使用3D卷积网络从体素网格中提取特征。这些特征能够描述体素内的点云分布和结构信息。

  3. 区域提议网络(RPN):基于提取的体素特征,使用RPN生成候选物体的3D边界框提议。RPN是一个全卷积网络,能够输出一系列3D边界框提议以及每个提议的置信度。

  4. 边界框回归和分类:对RPN生成的边界框提议进行回归和分类,以获得最终的物体检测结果。这一步通常使用3D卷积网络实现。

pointpillar

PointPillar是一种用于基于激光雷达(LiDAR)点云的3D物体检测的算法,由2019年CVPR论文《PointPillars: Fast Encoders for Object Detection from Point Clouds》提出。该算法的主要思想是将稀疏的点云数据转换成伪图像表示(每一个pixel不仅有原始的2D信息还包括了高度信息),然后使用2D卷积网络进行特征提取和物体检测。voxelnet很慢也很占内存。

PointPillar框架主要包括以下步骤:

  1. 点云预处理:将稀疏的点云数据转换成规则的伪图像表示。这一步通过将点云划分成规则的柱体(pillars),并对每个柱体内的点进行统计(如最大值、最小值、平均值等)来实现。

  2. 伪图像特征提取:使用2D卷积网络从伪图像中提取特征。这些特征能够描述每个柱体内的点云分布和结构信息。

  3. 区域提议网络(RPN):基于提取的伪图像特征,使用RPN生成候选物体的3D边界框提议。RPN是一个全卷积网络,能够输出一系列3D边界框提议以及每个提议的置信度。

  4. 边界框回归和分类:对RPN生成的边界框提议进行回归和分类,以获得最终的物体检测结果。这一步通常使用3D卷积网络实现。

PointPillar的创新之处在于其高效的计算方式,能够将稀疏的点云数据转换为密集的伪图像表示,从而利用成熟的2D卷积网络进行特征提取。这使得PointPillar在基于激光雷达的3D物体检测任务中取得了当时最先进的性能。

centerpoint

当anchor感应到附件有目标物体的时候,就会有一个很大的激活值,就是上面红色部分。

当物体是旋转的时候,anchor会误匹配,主要是因为anchor是正的,不能斜着

中心点的表征是热力图(关键点检测的loss):CLS*H*W,热力图的局部最大值认为是有目标obj

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/789531.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32 TIM DMA burst 输出变频 PWM 波形

1. 问题背景 客户需要 MCU 输出一组变频的 PWM 波形来控制外围器件,并且不同频率脉冲的个数也不同。STM32U5 芯片拥有 TIM1/TIM8 高级定时器,还有通用定时器TIM2/TIM3/TIM4/TIM5 以及 TIM15/TIM16/TIM17。TIM 模块中,可通过修改 ARR 寄存器的…

一文让你彻底理解 AdaBoost 自适应提升算法 | AdaBoost 的关键要点、基本原理、优缺点和实际应用

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 一、关键要点 AdaBoost,即自适应提升(Adaptive Boosting)算法的缩写,是一种基于 Boosting 策略的集成学习方法,旨在降低偏差。AdaBoost 的 “…

Vue和FastAPI实现前后端分离

前言 近期接触了一些开源大模型应用服务,发现很多用的都是FastAPI web框架,于是乎研究了一下它的优势,印象最深有两个:一个是它的异步处理性能比较好,二是它可以类似java swagger的API交互文档,这个对应前…

【快捷部署】013_Podman(3.4.4)

📣【快捷部署系列】013期信息 编号选型版本操作系统部署形式部署模式复检时间013podman3.4.4Ubuntu 22.04apt-2024-04-03 一、快捷部署 注意! 必须满足:Ubuntu 20.10 and newer #由于本期安装脚本较为简单,所以不制作一键安装脚本&#xf…

【Django学习笔记(三)】BootStrap介绍

BootStrap介绍 前言正文1、BootStrap 快速了解2、初识BootStrap2.1 下载地址2.2 创建目录2.3 引入BootStrap2.4 使用BootStrap 3、BootStrap 组件&样式3.1 导航条3.2 栅格系统3.3 container3.3.1 container3.3.2 container-fluid 3.4 面板3.5 媒体对象3.6 分页3.7 图标3.7.…

SAP-CO主数据之作业类型创建-<KL01>

公告:周一至周五每日一更,周六日存稿,请您点“关注”和“在看”,后续推送的时候不至于看不到每日更新内容,感谢。 目录 一、背景: 成本中心主数据创建: 成本要素主数据创建: 二…

氟化氢冷凝装置PFA反应烧瓶可应用半导体行业

PFA多颈烧瓶是一种高品质的实验室器皿,它具有多个颈口,可以在同一容器内进行多种化学反应。PFA多颈烧瓶能够耐受高温和强酸、强碱等腐蚀性介质,是化学实验中不可或缺的物品。多颈烧瓶可以配合搅拌桨、温度计、恒压分液漏斗、冷凝管等使用&…

golang语言系列:学习路线图

云原生学习路线导航页(持续更新中) 本文是 golang语言系列 文章,主要展示golang语言学习的全路线图 参考:https://github.com/darius-khll/golang-developer-roadmap/blob/master/i18n/zh-CN/ReadMe-zh-CN.md

本地Windows打包启动前端后台

本地Windows打包启动前端后台 1、安装jdk Windows JDK安装 2、Nginx 2.1、将 nginx-1.16.1文件夹复制到D:\home\jisapp目录下 2.2、域名证书配置: 将域名证书放到D:\home\jisapp\ssl\2023目录下->配置nginx.conf文件(D:\home\jisapp\nginx-1.22.0…

通过nvtx和Nsight Compute分析pytorch算子的耗时

通过nvtx和Nsight Compute分析pytorch算子的耗时 一.效果二.代码 本文演示了如何借助nvtx和Nsight Compute分析pytorch算子的耗时 一.效果 第一次执行,耗时很长 小规模的matmul,调度耗时远大于算子本身 大规模的matmul,对资源的利用率高小规模matmul,各层调用的耗时 二.代码…

【Linux】Vim编辑器

专栏文章索引:Linux 目录 在Vim编辑器中,一个Tab键相当于几个空格? 在Vim编辑器中,一个Tab键相当于几个空格? 在Vim编辑器中,默认情况下,一个Tab键相当于8个空格。 这是Vim的默认设置&#x…

【C++】二分查找算法(模板)

重点 只需要记住两点: 1.left right 时,一定就是最终结果(包括找不到目标值),无需再次判断,如果判断就会死循环 2.求中点如果是求左端点 mid left (right - left)/2 如果是求右端点 mid left (right -…

物联网实战--入门篇之(四)嵌入式-UART驱动

目录 一、串口简介 二、串口驱动设计 三、串口发送 四、串口接收处理 五、PM2.5数据接收处理 六、printf重定义 七、总结 一、串口简介 串口在单片机的开发中属于非常常用的外设,最基本的都会预留一个调试串口用来输出调试信息,串口时序这里就不谈…

洛谷-P1706 全排列问题(DFS)

目录 题目链接: 思路: 代码: 题目链接: P1706 全排列问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路: 如果n比较小,可以写n个for循环输出全排列。但是这种简单方法只能用于较小的n&#xff0…

代码随想录算法训练营第三十六天|435. 无重叠区间,763. 划分字母区间

435. 无重叠区间 题目 给定一个区间的集合 intervals ,其中 intervals[i] [starti, endi] 。返回 需要移除区间的最小数量,使剩余区间互不重叠 。 示例 1: 输入: intervals [[1,2],[2,3],[3,4],[1,3]] 输出: 1 解释: 移除 [1,3] 后,剩下…

基于opencv的SVM算法的车牌识别系统设计与实现

基于opencv的SVM算法的车牌识别系统设计与实现 车牌识别技术是智能交通系统中的一项关键技术,它能够自动识别车辆的车牌号码。本文将详细介绍如何使用Python编程语言结合OpenCV库和SVM算法来实现车牌识别系统。 系统架构 车牌识别系统主要包括以下几个模块&…

提高生产力!这10个Lambda表达式必须掌握,开发效率嘎嘎上升!

在Java8及更高版本中,Lambda表达式的引入极大地提升了编程的简洁性和效率。本文将围绕十个关键场景,展示Lambda如何助力提升开发效率,让代码更加精炼且易于理解。 集合遍历 传统的for-each循环对集合进行遍历虽然直观,但在处理大…

Python(乱学)

字典在转化为其他类型时,会出现是否舍弃value的操作,只有在转化为字符串的时候才不会舍弃value 注释的快捷键是ctrl/ 字符串无法与整数,浮点数,等用加号完成拼接 5不入??? 还有一种格式化的方法…

jupyter notebook 配置默认文件路径

Jupyter是一种基于Web的交互式计算环境,支持多种编程语言,如Python、R、Julia等。使用Jupyter可以在浏览器中编写和运行代码,同时还可以添加Markdown文本、数学公式、图片等多种元素,非常适合于数据分析、机器学习等领域。 安装 …

理解VAE,可视化

引言 本文主要摘抄自:Understanding Variational Autoencoders (VAEs), Joseph Rocca, Sep 24, 2019,同时会加一些自己的理解和对原文的解释。 关于数据生成,目前深度生成模型中主流的有: 生成对抗网络——GANs,这是…