算法学习17:背包问题(动态规划)

算法学习17:背包问题(动态规划)


文章目录

  • 算法学习17:背包问题(动态规划)
  • 前言
  • 一、01背包问题:
    • 1.朴素版:(二维)
    • 2.优化版:(一维)
  • 二、完全背包
    • 1.朴素版:(3重for)
    • 2.稍微优化版:(二维)
    • 3.完全背包问题模版:(最终优化版)
  • 三、多重背包
    • 1.朴素版:()
    • 2.多重背包问题的“二进制优化”:
  • 四、分组背包
    • 在这里插入图片描述
  • 总结


前言

在这里插入图片描述


提示:以下是本篇文章正文内容:

一、01背包问题:


1.朴素版:(二维)

在这里插入图片描述



在这里插入图片描述



// 例题:有n件物品,和一个容量是m的背包,每件物品只能使用一次。
// 第i件物品的体积是vi,价值是wi,
// 求将哪些物品装入背包,可以使总价值最大。
#include <iostream>
#include <algorithm>using namespace std;const int N = 1010;int n, m;
int v[N], w[N];// v:体积, w:价值
int f[N][N];// 从前i件物品中取,放到容量为j的背包中,最大的价值。 int main()
{cin >> n >> m;for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];for(int i = 1; i <= n; i ++)for(int j = 0; j <= m; j ++){f[i][j] = f[i - 1][j];// 不取 if(j >= v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);// 取 }cout << f[n][m] << endl;return 0;} 


在这里插入图片描述



2.优化版:(一维)

// 优化版:
#include <iostream>
#include <algorithm>using namespace std;const int N = 1010;int n, m;
int v[N], w[N];// v:体积, w:价值 
int f[N];// 从i件物品中去,放到容量为j的背包,最大的价值。
// 注意要执行i轮循环 int main()
{cin >> n >> m;for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];for(int i = 1; i <= n; i ++)// 注意1:如果这里不是倒着遍历,那么可能存在,在前面的时候,i物品已经被放进背包了 // 从大到小,保证前面的“状态”,还没有更新过。 for(int j = m; j >= v[i]; j --)// 不取 和 取 f[j] = max(f[j], f[j - v[i]] + w[i]);cout << f[m] << endl;return 0;} 


二、完全背包

1.朴素版:(3重for)



在这里插入图片描述



// 例题:有n种物品,容量为m的背包,“每种物品都有无限件可用”。
// 第i件物品的体积是vi,价值是wi,
// 求将哪些物品装入背包,可以使总价值最大,输出最大价值。
#include <iostream>
#include <algorithm>using namespace std; const int N = 1010;int n, m;
int v[N], w[N];
int f[N][N];int main()
{cin >> n >> m;for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];// 3重for循环: for(int i = 1; i <= n; i ++) for(int j = 0; j <= m; j ++)for(int k = 0; k * v[i] <= j; k ++)f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + w[i] * k);cout << f[n][m] << endl;return 0;
}


在这里插入图片描述



在这里插入图片描述



2.稍微优化版:(二维)

在这里插入图片描述



#include <iostream>
#include <algorithm>using namespace std; const int N = 1010;int n, m;
int v[N], w[N];
int f[N][N];int main()
{cin >> n >> m;for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];for(int i = 1; i <= n; i ++) for(int j = 0; j <= m; j ++){// 这样就和01背包问题有点像了 // 不同的是:f[i - 1][j - v[i]] + w[i] f[i][j] = f[i - 1][j]; // 注意1:要加一个判断条件 (否者越界) if(j >= v[i]) f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);}cout << f[n][m] << endl;return 0;
}


3.完全背包问题模版:(最终优化版)

#include <iostream>
#include <algorithm>using namespace std; const int N = 1010;int n, m;
int v[N], w[N];
int f[N];int main()
{cin >> n >> m;for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];for(int i = 1; i <= n; i ++) // 为什么是从前往后遍历,因为每件物品可以使用无限次,不存在重复问题 for(int j = v[i]; j <= m; j ++)f[j] = max(f[j], f[j - v[i]] + w[i]);cout << f[m]<< endl;return 0;
}

三、多重背包

1.朴素版:()



在这里插入图片描述



在这里插入图片描述



2.多重背包问题的“二进制优化”:

在这里插入图片描述



/*
多重背包问题的“二进制优化”: 
请先记住:二进制数的组合可以表示一个0~s范围内的十进制数
那么我们将总数量为s的一个“大包裹”转换为“1 2 4 8 16 32 64 .......”这样的小包裹然后对于:这些小包裹,我们选择“取或者不取”,这样就把“多重背包问题”转换为“01背包问题” 
*/
/*
注意:为什么要优化?
第一种也可以使用,但是当数据范围大的时候就是出现Time Limit Exceed问题。
(1)0< n, m <100   0< vi, wi, si <100
(2)0 < n <1000 0 < m < 2000 0 < vi, wi, si <2000
const int N = 25000 是如何得到的?1000 * log2(2000) = 1000 * 11 = 22000
*/
#include <iostream>
#include <algorithm>using namespace std;const int N = 25000, M = 2010;int n, m;
int v[N], w[N];
int f[N];int main()
{cin >> n >> m;int cnt = 0;// 标记 :作为打包后的总数量 for(int i = 1; i <= n; i ++){int a, b, s;// 体积,容量,数量 cin >> a >> b >> s;int k = 1;while(k <= s){cnt ++;v[cnt] = a * k;// 打包后的体积 w[cnt] = b * k;// 打包后的容量 s -= k;// 剩余的总数量 k *= 2;// 打包的件数 }if(s > 0)// 多了 {cnt ++;v[cnt] = a * s;w[cnt] = b * s;}}n = cnt;// 打包后的所有包裹的数量// 此时,又相当于01背包问题 for(int i = 1; i <= n; i ++)for(int j = m; j >= v[i]; j --)f[j] = max(f[j], f[j - v[i]] + w[i]); cout << f[m] << endl;	return 0;} 


四、分组背包



在这里插入图片描述

在这里插入图片描述

// 有n组物品,容量为m的背包,
// 每组物品有若干个,同一组内的物品最多只能选一个
// 每件物品的体积是vij,价值是wij,其中i是组号,j是组内编号
// 求将哪些物品装入背包,可以使总价值最大,输出最大价值。/*
输入:n,m
接下来n组数据:
第一行:s表示这一组物品的数量
接下来s行:v,w 
*/#include <iostream>
#include <algorithm>using namespace std;const int N = 110;int n, m;
int v[N][N], w[N][N], s[N];
int f[N]; int main()
{cin >> n >> m;for(int i = 1; i <= n; i ++){cin >> s[i];for(int j = 0; j <s[i]; j ++)cin >> v[i][j] >> w[i][j];}for(int i = 1; i <= n; i ++)// 像01背包:“取或不取”,只有一件,不可以重复,那么就倒着遍历,保证前面是未更新的 for(int j = m; j >= 0; j --)for(int k = 0; k < s[i]; k ++)if(v[i][k] <= j)f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);cout << f[m] << endl;return 0;} 


在这里插入图片描述

总结

提示:这里对文章进行总结:
💕💕💕

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/789376.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c++对象指针

对象指针在使用之前必须先进行初始化。可以让它指向一个已定义的对象&#xff0c;也可以用new运算符动态建立堆对象。 定义对象指针的格式为&#xff1a; 类名 *对象指针 &对象; //或者 类名 *对象指针 new 类名(参数); 用对象指针访问对象数据成员的格式为&#xff1a…

B02、类的加载过程梳理-2

1、类的加载过程&#xff08;生命周期&#xff09; 1.1、过程一&#xff1a;装载&#xff08;Loading&#xff09;阶段 1、过程一都做了什么事&#xff1f; 类的装载&#xff0c;简而言之就是将Java类的字节码文件加载到机器内存中&#xff0c;并在内存中构建出Java类的原型&a…

Python字符串操作方法一览表

字符串操作 你患得患失太在意从前又太担心将来&#xff0c;有句话说的好昨天是段历史&#xff0c;明天是个谜团而今天是天赐的礼物 像珍惜礼物那样珍惜今天。—— 龟大仙《功夫熊猫3》 1.字符串连接 例子&#xff1a; str1 "Hello" str2 "World" resul…

在线点餐(源码+文档)

在线点餐系统&#xff08;小程序、ios、安卓都可部署&#xff09; 文件包含内容程序简要说明含有功能项目截图客户端主页登录点餐注册个人资料我的 后台管理商品管理分类管理用户管理登录页订单管理分类管理 文件包含内容 1、搭建视频 2、流程图 3、开题报告 4、数据库 5、参考…

应用方案D78040场扫描电路,偏转电流可达1.7Ap-p,可用于中小型显示器

D78040是一款场扫描电路&#xff0c;偏转电流可达1.7Ap-p&#xff0c;可用于中小型显示器。 二 特 点 1、有内置泵电源 2、垂直输出电路 3、热保护电路 4、偏转电流可达1.7Ap-p 三 基本参数 四 应用电路图 1、应用线路 2、PIN5脚输出波形如下&#xff1a;

SON序列化解决方案

JSON&#xff08;JavaScript Object Notation&#xff09;是一种用于数据交换的轻量级数据格式。在我们日常Python编程中&#xff0c;通常可以使用内置的json模块来进行JSON序列化和反序列化。那么关于使用json模块进行JSON序列化和反序列化的问题解决方案&#xff0c;可以参考…

Matlab实验:离散时间信号与系统的时域分析

01.代码的主要内容 02.代码效果图 获取代码请关注MATLAB科研小白的个人公众号&#xff08;即文章下方二维码&#xff09;&#xff0c;并回复MATLAB课程设计&#xff1b;本公众号致力于解决找代码难&#xff0c;写代码怵。各位有什么急需的代码&#xff0c;欢迎后台留言~不定时更…

处理SAP报错:消息GLT2076 没有项目种类分配到科目 1481010102/1000

财务新建了个科目入账时报错&#xff1a;没有项目种类分配到科目。 查了下原因。原来是我们公司实施时启用了凭证分割功能。其中有个配置是这样的&#xff1a;给总账科目分类&#xff1a;IMG-财务会计&#xff08;新&#xff09;-总账会计核算-业务交易-凭证分解-为文档拆分给总…

20240322-1-协同过滤面试题

协同过滤面试题 1. 协同过滤推荐有哪些类型 基于用户(user-based)的协同过滤 基于用户(user-based)的协同过滤主要考虑的是用户和用户之间的相似度&#xff0c;只要找出相似用户喜欢的物品&#xff0c;并预测目标用户对对应物品的评分&#xff0c;就可以找到评分最高的若干个物…

IP代理池是什么?怎样判断IP池优劣?

许多做跨境电商的朋友们都会使用到IP代理池这个模块&#xff0c;那会有新想加入到跨境电商这个行业的朋友们会有疑问&#xff0c;IP代理池究竟是什么&#xff1f;今天为你解答。 IP代理池是一种集成多个代理IP的系统&#xff0c;其核心功能在于收集并维护大量的可用IP地址&…

什么是ECC?ECC 和 RSA 之间有何区别?

椭圆曲线密码学 (ECC) 是一种基于椭圆曲线数学的公开密钥加密算法。 它提供了一种执行密钥交换、数字签名和加密等加密操作的安全方式。 ECC 为 1977 年首次发布的 Rivest-Shamir-Adleman (RSA) 加密算法提供了一种替代性方案。 继续阅读&#xff0c;进一步了解椭圆曲线密码学…

采用大语言模型进行查询重写——Query Rewriting via Large Language Models

文章&#xff1a;Query Rewriting via Large Language Models&#xff0c;https://arxiv.org/abs/2403.09060 摘要 查询重写是在将查询传递给查询优化器之前处理编写不良的查询的最有效技术之一。 手动重写不可扩展&#xff0c;因为它容易出错并且需要深厚的专业知识。 类似地…

Monaco Editor系列(二)Hello World 初体验

前言&#xff1a;上一篇文章我主要分享了从 Monaco Editor 入口文件以及官方提供的示例项目入手&#xff0c;对一部分源码进行剖析&#xff0c;以及分享了初始化阶段代码的大致执行步骤&#xff0c;这一篇了来讲一下我们要用 Monaco Editor 的时候该怎么用。其中会涉及到一些 A…

ubuntu20.04 运行 lio-sam 流程记录

ubuntu20.04 运行 lio-sam 一、安装和编译1.1、安装 ROS11.2、安装 gtsam1.3、安装依赖1.4、下载源码1.5、修改文件1.6、编译和运行 二、官方数据集的运行2.1、casual_walk_2.bag2.2、outdoor.bag、west.bag2.3、park.bag 三、一些比较好的参考链接 记录流程&#xff0c;方便自…

dm8 开启归档模式

dm8 开启归档模式 1 命令行 [dmdbatest1 dm8]$ disql sysdba/Dameng123localhost:5237服务器[localhost:5237]:处于普通打开状态 登录使用时间 : 3.198(ms) disql V8 SQL> select name,status$,arch_mode from v$database;行号 NAME STATUS$ ARCH_MODE ----------…

Python中输出显示台的设置

效果: 前言 这种文字显示的方式很适合新手来学习,毕竟新手还学不到pygame做游戏的, Python入门我们一般都学的是输入输出的游戏,但是如果加上一些文字和背景的改善可能会更好. 如何改变字体颜色 字体颜色(跟他的变量名是一样的): #改变字体颜色 RED \033[91m GREEN \033…

EasyExcel 模板导出excel、合并单元格及单元格样式设置。 Freemarker导出word 合并单元格

xls文件&#xff1a; 后端代码&#xff1a; InputStream filePath this.getClass().getClassLoader().getResourceAsStream(templateFile);// 根据模板文件生成目标文件ExcelWriter excelWriter EasyExcel.write(orgInfo.getFilename()).excelType(ExcelTypeEnum.XLS).withTe…

c#仿ppt案例

画曲线 namespace ppt2024 {public partial class Form1 : Form{public Form1(){InitializeComponent();}//存放所有点的位置信息List<Point> lstPosition new List<Point>();//控制开始画的时机bool isDrawing false;//鼠标点击开始画private void Form1_MouseD…

【C语言基础】:自定义类型(一)--> 结构体

文章目录 一、内置类型与自定义类型1.1 内置类型&#xff08;基本数据类型&#xff09;1.2 自定义类型 二、结构体2.1 结构体的声明2.2 结构体变量的创建和初始化2.3 结构体的特殊声明2.4 结构体的自引用 三、结构体内存对齐3.1 对齐规则3.2 为什么存在内存对齐3.3 修改默认对齐…

C++心决之内联函数+auto关键字+指针空值

目录 7.内联函数 7.1 概念 7.2 特性 8. auto关键字(C11) 8.1 类型别名思考 8.2 auto简介 8.3 auto的使用细则 8.4 auto不能推导的场景 9. 基于范围的for循环(C11) 9.1 范围for的语法 9.2 范围for的使用条件 10. 指针空值nullptr(C11) 10.1 C98中的指针空值 7.内联…