C刊级 | Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

C刊级 | Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

目录

    • C刊级 | Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
%%  清空环境变量
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
warning off             % 关闭报警信息
%% 导入数据
res = xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
enddisp('程序运行时间较长,需迭代popsize*maxgen次!可自行调整运行参数')function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)%%  优化算法初始化
Alpha_pos = zeros(1, dim);  % 初始化Alpha狼的位置
Alpha_score = inf;          % 初始化Alpha狼的目标函数值,将其更改为-inf以解决最大化问题Beta_pos = zeros(1, dim);   % 初始化Beta狼的位置
Beta_score = inf;           % 初始化Beta狼的目标函数值 ,将其更改为-inf以解决最大化问题Delta_pos = zeros(1, dim);  % 初始化Delta狼的位置
Delta_score = inf;          % 初始化Delta狼的目标函数值,将其更改为-inf以解决最大化问题%%  初始化搜索狼群的位置
Positions = initialization(SearchAgents_no, dim, ub, lb);%%  用于记录迭代曲线
Convergence_curve = zeros(1, Max_iteration);
%%  循环计数器
iter = 0;%%  优化算法主循环
while iter < Max_iteration           % 对迭代次数循环for i = 1 : size(Positions, 1)   % 遍历每个狼% 返回超出搜索空间边界的搜索狼群% 若搜索位置超过了搜索空间,需要重新回到搜索空间Flag4ub = Positions(i, :) > ub;Flag4lb = Positions(i, :) < lb;% 若狼的位置在最大值和最小值之间,则位置不需要调整,若超出最大值,最回到最大值边界% 若超出最小值,最回答最小值边界Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;   % 计算适应度函数值
%         Positions(i, 2) = round(Positions(i, 2));
%         fitness = fical(Positions(i, :));fitness = fobj(Positions(i, :));% 更新 Alpha, Beta, Deltaif fitness < Alpha_score           % 如果目标函数值小于Alpha狼的目标函数值Alpha_score = fitness;         % 则将Alpha狼的目标函数值更新为最优目标函数值Alpha_pos = Positions(i, :);   % 同时将Alpha狼的位置更新为最优位置endif fitness > Alpha_score && fitness < Beta_score   % 如果目标函数值介于于Alpha狼和Beta狼的目标函数值之间Beta_score = fitness;                          % 则将Beta狼的目标函数值更新为最优目标函数值Beta_pos = Positions(i, :);                    % 同时更新Beta狼的位置endif fitness > Alpha_score && fitness > Beta_score && fitness < Delta_score  % 如果目标函数值介于于Beta狼和Delta狼的目标函数值之间Delta_score = fitness;                                                 % 则将Delta狼的目标函数值更新为最优目标函数值Delta_pos = Positions(i, :);                                           % 同时更新Delta狼的位置endend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/788714.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

stream使用

stream流式计算 在Java1.8之前还没有stream流式算法的时候&#xff0c;我们要是在一个放有多个User对象的list集合中&#xff0c;将每个User对象的主键ID取出&#xff0c;组合成一个新的集合&#xff0c;首先想到的肯定是遍历&#xff0c;如下&#xff1a; List<Long> u…

xss【2】

1.xss钓鱼 钓鱼攻击利用页面&#xff0c;fish.php黑客钓鱼获取到账号密码存储的位置 xss进行键盘记录 2.xss常规防范 3.xss验证payload XSS&#xff08;跨站攻击&#xff09;_details/open/ontoggle-CSDN博客

C++ 哈希思想应用:位图,布隆过滤器,哈希切分

C 哈希思想应用:位图,布隆过滤器,哈希切分 一.位图1.位图的概念1.问题2.分析3.位图的概念4.演示 2.位图的操作3.位图的实现1.char类型的数组2.int类型的数组3.解决一开始的问题位图开多大呢?小小补充验证 4.位图的应用1.给定100亿个整数&#xff0c;设计算法找到只出现一次的整…

C#开发中一些常用的工具类分享

一、配置文件读写类 用于在开发时候C#操作配置文件读写信息 1、工具类 ReadIni 代码 using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Runtime.InteropServices; using System.Text; using System.Threading.Tasks;namesp…

VScode debug python(服务器)

方法一&#xff1a; 创建launch.json文件&#xff1a; launch.json文件地址&#xff1a; launch.json文件内容&#xff1a; {"version": "0.2.0", //指定了配置文件的版本"configurations": [{"name": "Python: Current File&…

达梦数据库 优化

谁进行优化&#xff1f;优化什么&#xff1f; 优化不能仅从数据库方面考虑&#xff0c;比如&#xff0c;在存储达到数据库极限、应用涉及人员设计的代码稀巴烂的情况下&#xff0c;进行调优就是杯水车薪的效果。 涉及到优化人员&#xff1a; 数据库管理员应用程序架构师应用…

MySQL高可用MHA

一、MHA概述 1.1 什么是 MHA MHA&#xff08;MasterHigh Availability&#xff09;是一套优秀的MySQL高可用环境下故障切换和主从复制的软件。 MHA 的出现就是解决MySQL 单点故障的问题。 MySQL故障切换过程中&#xff0c;MHA能做到0-30秒内自动完成故障切换操作。 MHA能在…

笔记本电脑win7 Wireless-AC 7265连不上wifi6

1.背景介绍 旧路由器连接人数有限&#xff0c;老旧&#xff0c;信号不稳定更换了新路由器&#xff0c;如 TL-XDR5430易展版用户电脑连不上新的WIFI网络了&#xff0c;比较着急 核心问题&#xff1a;有效解决笔记本连接wifi上网问题&#xff0c;方法不限 2.环境信息 Windows…

Nginx 高级

文章目录 Nginx反向代理概念配置 负载均衡概念配置 动静分离概念配置 网关防盗链keepalivednginx跨域 Nginx 反向代理 概念 反向代理&#xff08;Reverse Proxy&#xff09;方式是指以代理服务器来接受internet上的连接请求&#xff0c;然后将请求转发给内部网络上的服务器&…

LabVIEW挖坑指南

一、挖坑指南 1.1、输出变量放在条件框内 错误写法&#xff1a; 现象&#xff1a;如果没进入对应的分支&#xff0c;输出为默认值 正常写法&#xff1a; 让每个分支输出的值都在预料之内。 1.2、统计耗时不准 错误写法 现象&#xff1a;统计出来的耗时是2000ms 正常写法&a…

ES8 学习 -- async 和 await / 对象方法扩展 / 字符串填充

文章目录 1. async 和 await1.1 基本语法1.2 使用示例1.3 案例练习 2. 对象方法扩展2.1 Object.values(obj)2.2 Object.entries(obj)2.3 Object.getOwnPropertyDescriptors(obj)使用示例 3. 字符串填充4. 函数参数的末尾加逗号 1. async 和 await async 函数&#xff0c;使得异…

基于SSM的“汽车销售分析与管理系统”的设计与实现(源码+数据库+文档+PPT)

基于SSM的“汽车销售分析与管理系统”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SSM 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 销售经理系统首页图 客户管理图 车辆…

c++的学习之路:8、内存管理与模板

一、 C/C内存分布 首先在c语言的动态内存管理中我知道了代码是如何存储数据的&#xff0c;然后c是根据c语言底层变化来的&#xff0c;那么c语言的内存管理就是适用c的内存管理&#xff0c;在c语言中程序是分为几个部分存储&#xff0c;例如在栈堆等等&#xff0c;他们的分布如…

Golang并发模型-Pipeline模型、Fan-in Fan-out模型

这段时间由于项目的需要&#xff0c;本人正在研究关于如何优雅的进行go的并发&#xff0c;以下是结合资料和视频的结果&#xff0c;文末会给出参考资料 Go语言的并发模型主要通过goroutine和channel实现&#xff0c;通过这个我们可以更有效地使用IO和CPU 这里我们围绕生成一个…

【随笔】Git 基础篇 -- 分支与合并(九)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…

mysql 基本查询

学习了mysql函数&#xff0c;接下来学习mysql基本查询。 1&#xff0c;基本查询语句 MySQL从数据表中查询数据的基本语句为SELECT 语句。SELECT语句的基本格式是&#xff1a; SELECT (*I <字段列表>} FROM <表1>,<表2>..[WHERE<表达式> [GROUP BY <…

手写简易操作系统(二十一)--硬盘驱动

前情提要 上面一节我们实现了 malloc 和 free 的系统调用&#xff0c;这一节我们来实现硬盘驱动。 一、硬盘分区 我们的文件系统安装在一块全新的硬盘中&#xff0c;我们先创建它&#xff0c;然后在给他分区。 1.1、创建硬盘 首先是创建&#xff0c;这个之前我们已经干过一…

Linux网络编程一(协议、TCP协议、UDP、socket编程、TCP服务器端及客户端)

文章目录 协议1、分层模型结构2、网络应用程序设计模式3、ARP协议4、IP协议5、UDP协议6、TCP协议 Socket编程1、网络套接字(socket)2、网络字节序3、IP地址转换4、一系列函数5、TCP通信流程分析 第二次更新&#xff0c;自己再重新梳理一遍… 协议 协议&#xff1a;指一组规则&…

Kafka架构概述

Kafka的体系结构 Kafka是由Apache软件基金会管理的一个开源的分布式数据流处理平台。Kafka具有支持消息的发布/订阅模式、高吞吐量与低延迟、持久化、支持水平扩展、高可用性等特点。可以将Kafka应用于大数据实时处理、高性能数据管道、流分析、数据集成和关键任务应用等场景。…

20240402—Qt如何通过动态属性设置按钮样式?

前言 正文 1、点击UI文件 2、选择Bool型或是QString 3、设置后这里出现动态属性 4、这qss文件中绑定该动态属性 QPushButton[PopBlueBtn"PopBlueBtn"]{background-color:#1050B7;color:#FFFFFF;font-size:20px;font-family:Source Han Sans CN;//思源黑体 CNbor…