- 一、生产者客户端配置参数acks说明
- 1、acks=1
- 2、acks=0
- 3、acks=-1
- 二、请求在写入Leader的数据管道之前,则会验证Leader的ISR副本数量和配置中的最小ISR数量
- 1、Leader的ISR小于配置文件中minInSyncReplicas,并且acks=-1,则抛异常
- 2、如果acks不等于-1,则就算Leader的ISR小于配置,也会正常执行写入数据管道操作
- 三、请求把数据写入到Leader的数据管道后,acks=-1和非-1,有不同的逻辑
- 1、如果acks=-1,则会创建延迟Produce请求,等待ISR中所有副本的响应
- 2、如果acks不等于-1,写入到Leader的数据管道后,则直接执行回调函数返回结果
- 四、在返回response时,回调函数会遍历分区异常信息
- 1、如果acks=0,则关闭套接字服务器
- 2、如果acks不等0,会返回异常信息
一、生产者客户端配置参数acks说明
首先,客户端需要配置一个
acks
参数,默认值是1,下面是acks
各个值的说明
acks=-1,太慢,acks=0,有风险,acks=1,则是推荐,所以也是默认值的原因
1、acks=1
这意味着至少要等待leader已经成功将数据写入本地log,但是并没有等待所有follower是否成功写入。如果follower没有成功备份数据,而此时leader又无法提供服务,则消息会丢失。
2、acks=0
表示producer
不需要等待任何确认收到的信息,副本将立即加到socket buffer
并认为已经发送。没有任何保障可以保证此种情况下server
已经成功接收数据,同时重试配置不会发生作用(因为客户端不知道是否失败)回馈的offset会总是设置为-1
。
3、acks=-1
这意味着leader
需要等待ISR中所有备份都成功写入日志。只要任何一个备份存活,数据都不会丢失。min.insync.replicas
指定必须确认写入才能被认为成功的副本的最小数量。
二、请求在写入Leader的数据管道之前,则会验证Leader的ISR副本数量和配置中的最小ISR数量
def appendRecordsToLeader(records: MemoryRecords, origin: AppendOrigin, requiredAcks: Int,requestLocal: RequestLocal): LogAppendInfo = {//函数首先获取leaderIsrUpdateLock的读锁,以确保对Leader和ISR(In-Sync Replica)的更新操作是同步的。val (info, leaderHWIncremented) = inReadLock(leaderIsrUpdateLock) {//然后检查当前是否有Leader日志,leaderLogIfLocal match {//如果存在Leader日志,case Some(leaderLog) =>//则获取最小ISR(MinInSyncReplicas)的配置和ISR的大小。val minIsr = leaderLog.config.minInSyncReplicasval inSyncSize = partitionState.isr.size// Avoid writing to leader if there are not enough insync replicas to make it safe,如果没有足够的不同步副本来使其安全,请避免写入领导者//如果ISR的大小小于最小ISR要求,并且requiredAcks的值为-1(表示不需要确认),则抛出NotEnoughReplicasException异常。if (inSyncSize < minIsr && requiredAcks == -1) {throw new NotEnoughReplicasException(s"The size of the current ISR ${partitionState.isr} " +s"is insufficient to satisfy the min.isr requirement of $minIsr for partition $topicPartition")}//调用Leader日志的appendAsLeader方法将记录作为Leader追加到日志中,并传递相关参数。val info = leaderLog.appendAsLeader(records, leaderEpoch = this.leaderEpoch, origin,interBrokerProtocolVersion, requestLocal)// we may need to increment high watermark since ISR could be down to 1,// 我们可能需要增加高水位线,因为 ISR 可能降至 1(info, maybeIncrementLeaderHW(leaderLog))//如果没有,则抛出NotLeaderOrFollowerException异常。case None =>throw new NotLeaderOrFollowerException("Leader not local for partition %s on broker %d".format(topicPartition, localBrokerId))}}//返回追加记录的信息,并根据是否增加了Leader高水位线,将LeaderHwChange.INCREASED或LeaderHwChange.SAME复制给返回信息的副本。info.copy(if (leaderHWIncremented) LeaderHwChange.INCREASED else LeaderHwChange.SAME)}
1、Leader的ISR小于配置文件中minInSyncReplicas,并且acks=-1,则抛异常
会验证acks=-1并且当前Leader的ISR副本数量小于配置中规定的最小值
val minIsr = leaderLog.config.minInSyncReplicasval inSyncSize = partitionState.isr.sizeif (inSyncSize < minIsr && requiredAcks == -1) {throw new NotEnoughReplicasException(s"The size of the current ISR ${partitionState.isr} " +s"is insufficient to satisfy the min.isr requirement of $minIsr for partition $topicPartition")}
2、如果acks不等于-1,则就算Leader的ISR小于配置,也会正常执行写入数据管道操作
//调用Leader日志的appendAsLeader方法将记录作为Leader追加到日志中,并传递相关参数。val info = leaderLog.appendAsLeader(records, leaderEpoch = this.leaderEpoch, origin,interBrokerProtocolVersion, requestLocal)
三、请求把数据写入到Leader的数据管道后,acks=-1和非-1,有不同的逻辑
这里不从头开始,如果想知道推送的数据怎么到下面方法的,可以看kafka 3.5 kafka服务端接收生产者发送的数据源码
/***将消息附加到分区的领导副本,并等待它们复制到其他副本;当超时或满足所需的 ACK 时,将触发回调函数;如果回调函数本身已经在某个对象上同步,则传递此对象以避免死锁* 请注意,所有挂起的延迟检查操作都存储在队列中。所有 ReplicaManager.appendRecords() 的调用方都应为所有受影响的分区调用 ActionQueue.tryCompleteActions,而不会保留任何冲突的锁。*/def appendRecords(timeout: Long,requiredAcks: Short,internalTopicsAllowed: Boolean,origin: AppendOrigin,entriesPerPartition: Map[TopicPartition, MemoryRecords],responseCallback: Map[TopicPartition, PartitionResponse] => Unit,delayedProduceLock: Option[Lock] = None,recordConversionStatsCallback: Map[TopicPartition, RecordConversionStats] => Unit = _ => (),requestLocal: RequestLocal = RequestLocal.NoCaching): Unit = {//省略代码 //把数据中加入到本地Log val localProduceResults = appendToLocalLog(internalTopicsAllowed = internalTopicsAllowed,origin, entriesPerPartition, requiredAcks, requestLocal)//省略代码 //调用recordConversionStatsCallback方法,将每个分区的记录转换统计信息传递给回调函数。recordConversionStatsCallback(localProduceResults.map { case (k, v) => k -> v.info.recordConversionStats })//通过 delayedProduceRequestRequired 方法判断是否需要等待其它副本完成写入,如果 acks = -1,则需要等待所有副本的回应if (delayedProduceRequestRequired(requiredAcks, entriesPerPartition, localProduceResults)) {//根据条件判断是否需要创建延迟的produce操作。如果需要,创建一个DelayedProduce对象,并将它添加到delayedProducePurgatory中。val produceMetadata = ProduceMetadata(requiredAcks, produceStatus)val delayedProduce = new DelayedProduce(timeout, produceMetadata, this, responseCallback, delayedProduceLock)//创建(主题、分区)对的列表,以用作此延迟生成操作的键val producerRequestKeys = entriesPerPartition.keys.map(TopicPartitionOperationKey(_)).toSeq// 再一次尝试完成该延时请求// 如果暂时无法完成,则将对象放入到相应的Purgatory中等待后续处理delayedProducePurgatory.tryCompleteElseWatch(delayedProduce, producerRequestKeys)} else {//如果不需要延迟操作,直接将produce的结果返回给回调函数。val produceResponseStatus = produceStatus.map { case (k, status) => k -> status.responseStatus }responseCallback(produceResponseStatus)}else{//如果不需要延迟操作,直接将produce的结果返回给回调函数。// we can respond immediatelyval produceResponseStatus = produceStatus.map { case (k, status) => k -> status.responseStatus }responseCallback(produceResponseStatus)}//省略代码}
1、如果acks=-1,则会创建延迟Produce请求,等待ISR中所有副本的响应
//它用于判断是否需要延迟发送生产请求并等待复制完成// 1. required acks = -1 判断requiredAcks是否等于-1,即是否需要等待所有副本的确认。// 2. there is data to append 判断entriesPerPartition是否不为空,即是否有要追加的数据。// 3. at least one partition append was successful (fewer errors than partitions) 计算localProduceResults中异常定义的数量,判断其是否小于entriesPerPartition的大小,即是否至少有一个分区的追加操作成功(即比分区数少的错误,如果全错,就应该直接返回)。private def delayedProduceRequestRequired(requiredAcks: Short,entriesPerPartition: Map[TopicPartition, MemoryRecords],localProduceResults: Map[TopicPartition, LogAppendResult]): Boolean = {requiredAcks == -1 &&entriesPerPartition.nonEmpty &&localProduceResults.values.count(_.exception.isDefined) < entriesPerPartition.size}
/***检查操作是否可以完成,如果没有,则根据给定的监视键进行监视*请注意,可以在多个密钥上监视延迟操作。对于某些键(但不是所有键),操作可能会在添加到监视列表后完成。* 在这种情况下,操作被视为已完成,不会添加到其余键的监视列表中。过期收割线程将从存在该操作的任何观察程序列表中删除此操作。* @param operation the delayed operation to be checked 要检查的延迟操作* @param watchKeys keys for bookkeeping the operation 用于监视的键* @return true iff the delayed operations can be completed by the caller 如果延迟操作可以由调用方完成,则为 true*/def tryCompleteElseWatch(operation: T, watchKeys: Seq[Any]): Boolean = {assert(watchKeys.nonEmpty, "The watch key list can't be empty")//尝试完成操作,如果操作不能立即完成,则将操作添加到所有观察键的观察列表中,并递增estimatedTotalOperations计数器的值if (operation.safeTryCompleteOrElse {watchKeys.foreach(key => watchForOperation(key, operation))if (watchKeys.nonEmpty) estimatedTotalOperations.incrementAndGet()}) return true//如果操作仍未完成,则根据条件执行以下操作:if (!operation.isCompleted) {//如果启用了定时器(timerEnabled为真),则将操作添加到超时定时器中。if (timerEnabled)timeoutTimer.add(operation)//如果操作已完成,则取消定时器任务。if (operation.isCompleted) {// cancel the timer taskoperation.cancel()}}//返回false表示操作未完成。false}
2、如果acks不等于-1,写入到Leader的数据管道后,则直接执行回调函数返回结果
//如果不需要延迟操作,直接将produce的结果返回给回调函数。// we can respond immediatelyval produceResponseStatus = produceStatus.map { case (k, status) => k -> status.responseStatus }responseCallback(produceResponseStatus)
四、在返回response时,回调函数会遍历分区异常信息
//用于发送 produce 响应的回调 ProduceResponse 的构造能够接受自动生成的协议数据,因此 KafkaApishandleProduceRequest 应应用自动生成的协议以避免额外的转换@nowarn("cat=deprecation")def sendResponseCallback(responseStatus: Map[TopicPartition, PartitionResponse]): Unit = {val mergedResponseStatus = responseStatus ++ unauthorizedTopicResponses ++ nonExistingTopicResponses ++ invalidRequestResponsesvar errorInResponse = falsemergedResponseStatus.forKeyValue { (topicPartition, status) =>if (status.error != Errors.NONE) {errorInResponse = truedebug("Produce request with correlation id %d from client %s on partition %s failed due to %s".format(request.header.correlationId,request.header.clientId,topicPartition,status.error.exceptionName))}}//记录带宽和请求配额特定的值,并在违反任何配额时通过静音通道来限制。如果违反了两个配额,请使用两个配额之间的最大限制时间。请注意,如果 acks == 0,则不会强制执行请求配额。val timeMs = time.milliseconds()val requestSize = request.sizeInBytesval bandwidthThrottleTimeMs = quotas.produce.maybeRecordAndGetThrottleTimeMs(request, requestSize, timeMs)val requestThrottleTimeMs =if (produceRequest.acks == 0) 0else quotas.request.maybeRecordAndGetThrottleTimeMs(request, timeMs)val maxThrottleTimeMs = Math.max(bandwidthThrottleTimeMs, requestThrottleTimeMs)if (maxThrottleTimeMs > 0) {request.apiThrottleTimeMs = maxThrottleTimeMsif (bandwidthThrottleTimeMs > requestThrottleTimeMs) {requestHelper.throttle(quotas.produce, request, bandwidthThrottleTimeMs)} else {requestHelper.throttle(quotas.request, request, requestThrottleTimeMs)}}//如果produceRequest.acks等于0,表示不需要响应。if (produceRequest.acks == 0) {//如果生产者请求,则无需操作;//但是,如果在处理请求时出现任何错误,由于生产者期望没有响应,服务器将关闭套接字服务器,以便生产者客户端知道发生了一些错误并刷新其元数据if (errorInResponse) {//如果errorInResponse为true,则关闭连接并发送包含错误信息的ProduceResponse响应val exceptionsSummary = mergedResponseStatus.map { case (topicPartition, status) =>topicPartition -> status.error.exceptionName}.mkString(", ")info(s"Closing connection due to error during produce request with correlation id ${request.header.correlationId} " +s"from client id ${request.header.clientId} with ack=0\n" +s"Topic and partition to exceptions: $exceptionsSummary")requestChannel.closeConnection(request, new ProduceResponse(mergedResponseStatus.asJava).errorCounts)} else {//如果没有异常,发送无操作的响应。requestHelper.sendNoOpResponseExemptThrottle(request)}} else {//如果produceRequest.acks不等于0,将mergedResponseStatus和maxThrottleTimeMs作为参数构造ProduceResponse响应,并通过requestChannel发送响应。requestChannel.sendResponse(request, new ProduceResponse(mergedResponseStatus.asJava, maxThrottleTimeMs), None)}}
1、如果acks=0,则关闭套接字服务器
//如果生产者请求,则无需操作;//但是,如果在处理请求时出现任何错误,由于生产者期望没有响应,服务器将关闭套接字服务器,以便生产者客户端知道发生了一些错误并刷新其元数据if (errorInResponse) {//如果errorInResponse为true,则关闭连接并发送包含错误信息的ProduceResponse响应val exceptionsSummary = mergedResponseStatus.map { case (topicPartition, status) =>topicPartition -> status.error.exceptionName}.mkString(", ")info(s"Closing connection due to error during produce request with correlation id ${request.header.correlationId} " +s"from client id ${request.header.clientId} with ack=0\n" +s"Topic and partition to exceptions: $exceptionsSummary")requestChannel.closeConnection(request, new ProduceResponse(mergedResponseStatus.asJava).errorCounts)}
2、如果acks不等0,会返回异常信息
requestChannel.sendResponse(request, new ProduceResponse(mergedResponseStatus.asJava, maxThrottleTimeMs), None)