ICLR 2024 | 鸡生蛋蛋生鸡?再论生成数据能否帮助模型训练

  ChatGPT狂飙160天,世界已经不是之前的样子。

新建了人工智能中文站https://ai.weoknow.com
每天给大家更新可用的国内可用chatGPT资源

发布在https://it.weoknow.com

更多资源欢迎关注


 


随着生成模型(如 ChatGPT、扩散模型)飞速发展,一方面,生成数据质量越来越高,到了以假乱真的程度;另一方面,随着模型越来越大,也使得人类世界的真实数据即将枯竭。

面对这一处境,一个近期的研究热度是,能否利用生成模型生成的假数据来辅助学习?学界对此也产生了许多争论:到底是可以左脚踩右脚(bootsrap)地实现 weak-to-strong 的不断提升,还是像鸡生蛋、蛋生鸡一样,只不过是徒劳无功?

在近期 ICLR 2024 工作中,北大王奕森团队针对这一「数据扩充」(Data Inflation)问题展开了深入研究。

他们针对对比学习(如 SimCLR、DINO、CLIP)这一常见的自监督学习场景,从理论和实验两方面分析了生成数据对于表示学习能力的影响。为了控制变量,他们保证生成模型和表示学习都只能使用同一个(无监督)真实数据集进行训练,避免了扩充数据本身带来的收益。

图片

  • 论文题目:Do Generated Data Always Help Contrastive Learning?

  • 论文地址:https://arxiv.org/abs/2403.12448

  • 代码地址:https://github.com/PKU-ML/adainf

他们发现,在这种情况下,生成数据并不总是对表示学习有帮助,在很多情况下甚至有害。比如,将 DDPM 的数据直接加入 CIFAR-10 训练,反而导致分类准确率下降超过 1%(前人工作 [1] 也有类似发现:用生成数据扩充 ImageNet 后 ResNet-50 的分类准确率下降了 2.69%)。进一步分析表明,有两个关键因素影响了生成数据的收益:

  1. 真实数据和生成数据的比例。从人的角度来看,生成数据似乎以假乱真,但对于模型训练而言并非如此。他们发现,真实数据与生成数据的混合比例在 10:1 附近时达到最优,也就是说,1 个真实数据的「训练价值」约等于 10 个生成数据。这侧面说明了二者的差异。

  2. 训练策略的设计。他们发现,在使用生成数据进行训练时,如果维持原有的训练参数,则模型几乎没有提升。相反,如果随着数据集的扩充,而相应降低模型训练所使用的数据增广的强度,则可以获得显著提升。

针对这两个核心观察,本文还从自监督理论出发,解释了他们内在的产生原因,并进而分析了数据量、数据质量与数据增广强度之间的权衡取舍。

图片

图 1 (a):数据扩充流程 ;(b):不同扩充策略下的对比学习性能。

真实数据比生成数据的「训练价值」

数据扩充最直观的一个影响因素是生成数据的质量问题。下图 2(a)表明,生成数据质量越高,对比学习的下游泛化能力越好,但遗憾的是即使是目前的 SOTA 生成模型 STF,也只让模型的 Linear Accuracy(在特征上应用线性分类器的分类准确率)比此前仅上升 0.02%。由于真实图片包含更丰富、准确的信息,因此扩充后的数据集中真实数据和生成数据的地位不应该相同。本文研究通过在混合时对真实数据复制 N 倍的方式,对真实数据和生成数据进行重加权(Reweighting)。

图 2(b)表明,混合比例在 10:1 时达到最优(weak augmentation)。本文进一步从理论上分析了重加权的作用,在此不做展开。

图片

图 2 (a)生成数据质量对对比学习的影响 (b)数据重赋权对对比学习的影响

数据增广与数据扩充,如何权衡?

在对比学习中,数据增强(Data Augmentation)的选取至关重要。通常来说,自监督学习需要使用较强的数据增强(如裁切、掩码等)来学习的数据表示。为了区分,本文将生成数据视为数据扩充(Data Inflation),二者的区别是,数据扩充是扩大原始数据集的大小,而数据增广是对每个原始样本,在训练过程中进行随机增强。

直观上看,数据扩充和数据增广都会提升数据多样性但数据增广可能会改变图像的语义信息(下图 3),因此当数据扩充提供了足够的数据时,便可以减弱数据增广从而减小因图像语义信息的改变带来的误差。

图片

图 3 数据增强可能改变图片的语义信息

文中构造了四个不同规模的数据集:CIFAR-10、Half CIFAR-10(CIFAR-10 的一半)、CIFAR-10+10 万张生成图片、CIFAR-10+100 万张生成图片,通过改变 random resized crop(RRC)来反应不同的数据增广强度。

下图 4 中表明最优数据增广强度随着数据规模的增大而减小(Half CIFAR-10:0.02,CIFAR-10:0.08,CIFAR-10+0.1M:0.20,CIFAR-10+1M:0.30)。因此当进行数据扩充时,数据增广强度需要减弱。也就是说,只有当二者搭配得当,才能充分发挥生成数据的作用。

图片

图 4 数据量和数据增广强度的关系

基于增广图的理论理解

图片

数据扩充后的下游泛化误差上界

为了进一步刻画数据扩充和数据增广之间的关系,本文从图的角度来建模对比学习:将数据增强产生的每个样本视为图 上的节点,并定义同一样本产生的数据增广样本之间存在一条边,这样便在样本空间构建了一个图,称为增广图(Augmentation Graph)[2,3]。

这是理解自监督学习的经典理论之一,根据这一建模,对比学习的下游泛化误差上界可表示为

图片

,其中

图片

表示由于数据增强造成的标签错误(labeling error),

图片

表示增广图拉普拉斯矩阵的第

图片

小的特征值,用于反应图的连通性。

数据扩充和数据增广对

图片

图片

的影响:

  • 数据扩充:不会改变标签错误

    图片

    ,但可以提升图的连通性(

    图片

    增大)(下图 5 (a))。

  • 数据增广:数据增广强度增加,会使得 labeling error

    图片

    增大(图 5 (b)),但同时使不同样本之间的交叠部分增加,即增广图的连通性增强(

    图片

    增大)(图 5 (c))。

因此当数据扩充提升数据规模从而提供了足够的图的连通性时,为了进一步减小下游泛化误差,可以减弱数据增广强度从而使得 减小。反之数据规模比较小时,则需要更强的数据增强去获得更好的图的连通性。也就是说,数据扩充和数据增强在对比学习中存在互补作用,当数据扩充后,对应的最优数据增广强度减小(图 5(d))。

图片

图 5 数据扩充和数据增广对 labeling error 

图片

和图

图片

的连通性的影响

基于以上的理解,论文提出自适应的数据扩充 Adaptive Inflation(AdaInf),根据生成数据的质量、大小,动态调整对比学习算法。其中,最重要的两个指导原则是 1)真实数据和生成数据需赋予不同权重,生成数据质量越差权重应该越小;2)数据量增大后,应该减弱数据增广强度,减少数据增强的负面作用。

实验结果

本文主要考虑生成数据的规模远大于真实数据的应用场景。为了在计算能力有限的情况下分析这一场景,作者主要考虑 CIFAR 数据集,因为可以在该数据集上采样大量图片。

以 CIFAR-10 为例,其中包含 5 万真实训练样本,作者利用生成模型(GAN 或扩散模型)为它们添加 100 万生成数据。以 10:1 的比例混合之后,作者将 CIFAR 数据集的总规模扩充到 150 万。为了公平比较,本文保证全训练过程中,生成模型也只能获取 5 万无监督数据。作者采用 SimCLR 作为默认方法并保持默认参数。

图片

表 1 不同模型和不同数据集下的对比学习线性探测性能

本文在图像识别任务上表 1 表明,AdaInf 在不同的对比学习模型和不同数据集上的性能显著好于没有数据扩充(No Inflation)或者直接进行数据扩充(Vanilla Inflation)。仅使用基础的 SimCLR 方法,AdaInf 就可以将 ResNet-18 上的自监督性能从 91.56 提升到 93.42,超越了大部分「魔改」的自监督学习方法,达到 Sota 水平。这进一步验证了「数据为王」的规律,展示了 scaling 的潜力

消融实验:本文在下表 2 (a)中研究了 AdaInf 的组成部分:生成数据、数据重赋权、数据弱增广。结果表明三者的重要性为数据弱增广 > 数据重赋权 > 生成数据。这反映了数据扩充和数据增广之间的相互作用对于对比学习的影响很大。

应用场景:作者进一步发现, AdaInf 可以很好地应用的数据缺乏的场景下。如表 2 (b)所示,当 CIFAR-10 每个类仅有 500 个样本时,AdaInf 可以获得更明显的提升。

图片

表 2 (a)消融实验 (b)数据匮乏场景下的应用

  ChatGPT狂飙160天,世界已经不是之前的样子。

新建了人工智能中文站https://ai.weoknow.com
每天给大家更新可用的国内可用chatGPT资源

发布在https://it.weoknow.com

更多资源欢迎关注


 


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/787961.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nomad Web更新没有最快只有更快

大家好,才是真的好。 很长时间没介绍运行在浏览器中的Notes客户端即Nomad Web更新情况。 不用安装,直接使用,还可以完美地兼容适应各种操作系统,Nomad Web一定是Notes/Domino产品现在和将来重点发展的用户访问模式。 不过&…

【CKA模拟题】一文教你用StorageClass轻松创建PV

题干 For this question, please set this context (In exam, diff cluster name) kubectl config use-context kubernetes-adminkubernetesYour task involves setting up storage components in a Kubernetes cluster. Follow these steps: Step 1: Create a Storage Class…

书生 浦语 大模型趣味 Demo

目录 一. 部署 InternLM2-Chat-1.8B 模型进行智能对话 1. 环境准备 2. 下载模型参数 3. 运行Demo 二. 部署实战营 八戒-Chat-1.8B 模型 1. 下载Demo仓库 2. 启动web服务端加载八戒模型: 3. 将SSH远程端口映射到本地 4. 在本地浏览器打开:http:/…

Python抓取抖音直播间数据:技术探索与实践

目录 一、引言 二、技术准备 三、分析抖音直播间网页结构 四、编写爬虫代码 五、处理反爬虫机制 六、数据清洗与存储 七、总结 一、引言 随着互联网的快速发展,直播行业已成为当下的热门领域。抖音作为其中的佼佼者,吸引了大量的用户和主播。对于…

元宇宙虚拟空间的场景构造(二)

前言 该文章主要讲元宇宙虚拟空间的场景构造,基本核心技术点,不多说,直接引入正题。 场景的构造 使用引入的天空模块 this.sky new Sky(this); 在Sky模块里,有设置对其中的阳光进行不同时间段的光线处理。而天空又是怎么样的…

STM32 DWT数据观察触发器作为延时函数的使用

STM32 DWT数据观察触发器作为延时函数的使用 📑DWT(Data Watchpoint and Trace数据观察触发器)描述 📝DWT是属于处理器内核单元中的调试组件之一,由四个比较器组成。它们可配置为:硬件监视点或对ETM或PC采样器或数据地…

dcoker 下redis设置密码

修改Docker里面Redis密码 Redis是一个开源的内存数据结构存储系统,常用于缓存、消息队列和数据持久化等场景。在使用Docker部署Redis时,默认情况下是没有设置密码的,这可能会导致安全隐患。因此,为了保证数据的安全性&…

蓝桥杯真题Day44 倒计时10天 练了六道真题 !

[蓝桥杯 2020 省 B2] 平面切分 题目描述 平面上有 N 条直线, 其中第 i 条直线是 yAi​⋅xBi​ 。请计算这些直线将平面分成了几个部分。 输入格式 第一行包含一个整数 N。 以下 N 行, 每行包含两个整数 Ai​,Bi​。 输出格式 一个整数代表答案。 代码表示 #include<…

基于SpringBoot的图书馆管理系统设计与实现

介绍 基于&#xff1a;java8 SpringBoot thymeleaf MySQL8.0.17 mybatis-plus maven Xadmin 实现图书馆管理系统 系统要实现如下的基本管理功能&#xff1a; &#xff08;1&#xff09;用户分为两类&#xff1a;管理员&#xff0c;一般用户。 &#xff08;2&#xff09…

Day57:WEB攻防-SSRF服务端请求Gopher伪协议无回显利用黑白盒挖掘业务功能点

目录 SSRF-原理&挖掘&利用&修复 SSRF无回显解决办法 SSRF漏洞挖掘 SSRF协议利用 http:// &#xff08;常用&#xff09; file:/// &#xff08;常用&#xff09; dict:// &#xff08;常用&#xff09; sftp:// ldap:// tftp:// gopher:// &#xff08;…

群晖NAS使用Docker部署大语言模型Llama 2结合内网穿透实现公网访问本地GPT聊天服务

文章目录 1. 拉取相关的Docker镜像2. 运行Ollama 镜像3. 运行Chatbot Ollama镜像4. 本地访问5. 群晖安装Cpolar6. 配置公网地址7. 公网访问8. 固定公网地址 随着ChatGPT 和open Sora 的热度剧增,大语言模型时代,开启了AI新篇章,大语言模型的应用非常广泛&#xff0c;包括聊天机…

Nginx漏洞之未授权访问和源码泄漏漏洞处理

一、漏洞描述 某次安全扫描&#xff0c;发现某平台存在资源&#xff1a;未授权访问和源码泄漏&#xff1b;攻击者可能获取到网站的配置文件、敏感数据存储位置和访问凭证等信息。这意味着攻击者可以获得对网站的完全或部分控制权&#xff0c;进而进行恶意篡改、删除或添加恶意…

6.8物联网RK3399项目开发实录-驱动开发之RTC实时时钟的使用(wulianjishu666)

90款行业常用传感器单片机程序及资料【stm32,stc89c52,arduino适用】 链接&#xff1a;https://pan.baidu.com/s/1M3u8lcznKuXfN8NRoLYtTA?pwdc53f RTC 使用 简介 AIO-3399J 开发板上有 一个集成于 RK808 上的RTC(Real Time Clock)&#xff0c;主要功能有时钟&#xff0c…

【PowerDesigner】PGSQL反向工程过程已中断

问题 反向工程过程已中断,原因是某些字符无法通过ANSI–&#xff1e;UTF-16转换进行映射。pg导入sql时报错&#xff0c;一查询是power designer 反向工程过程已中断&#xff0c;某些字符无法通过ANSI–>UTF-16转换进行映射&#xff08;会导致数据丢失&#xff09; 处理 注…

代码随想录第28天| 131.分割回文串 93.复原IP地址 78.子集

131.分割回文串 131. 分割回文串 - 力扣&#xff08;LeetCode&#xff09; 代码随想录 (programmercarl.com) 带你学透回溯算法-分割回文串&#xff08;对应力扣题目&#xff1a;131.分割回文串&#xff09;| 回溯法精讲&#xff01;_哔哩哔哩_bilibili 给你一个字符串 s&…

连接Redis不支持集群错误,ERR This instance has cluster support disabled,解决方案

1. 问题背景 调整redis的配置后&#xff0c;启动程序时&#xff0c; 会报如下错误&#xff1a; [redis://172.16.0.8xxx]: ERR This instance has cluster support disabledSuppressed: io.lettuce.core.RedisCommandExecutionException: ERR This instance has cluster supp…

苹果安卓双端短视频直播系统源码,带后台-支持二开和采集

搭建教程 1.PHP5.6-7.2 mysql 5.6 redis5.0 nginx1.15 2.宝塔就完全满足了 我刚开了台服务器&#xff0c;建议用阿里云的 我这个是腾讯云 先让服务器 自己装着 时间比较长 3.搭建前需要准备的东西 腾讯云直播、七牛存储、百度语音、腾讯地图等好多东西 七牛存储…

Micron FY24 Q2业绩强劲,凭内存实现翻盘

根据TechInsights数据显示&#xff0c;美光科技24财年第二季度业绩强劲&#xff0c;公司通过技术创新和产能优化&#xff0c;成功抓住了AI服务器和其他高性能应用带来的市场需求增长机遇。尽管短期内面临供应紧张的问题&#xff0c;但美光通过加大研发投入和产能转换力度&#…

Leetcode 322. 零钱兑换

心路历程&#xff1a; 这道题和上一道完全平方数的和基本上一摸一样&#xff0c;甚至比上一道题还简单&#xff0c;基于dp的建模&#xff1a; 状态&#xff1a;当前的目标总金额 动作&#xff1a;选哪一个硬币 返回值&#xff1a;凑成该目标总金额的最少硬币个数 这道题如果硬…

MATLAB科研绘图与学术图表绘制从入门到精通

&#x1f482; 个人网站:【 摸鱼游戏】【神级代码资源网站】【工具大全】&#x1f91f; 一站式轻松构建小程序、Web网站、移动应用&#xff1a;&#x1f449;注册地址&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交…