scRNA+bulk+MR:动脉粥样硬化五个GEO数据集+GWAS,工作量十分到位

今天给大家分享一篇JCR一区,单细胞+bulk+MR的文章:An integrative analysis of single-cell and bulk transcriptome and bidirectional mendelian randomization analysis identified C1Q as a novel stimulated risk gene for Atherosclerosis

  • 标题:单细胞和批量转录组的整合分析以及双向孟德尔随机化分析确定了C1Q作为动脉粥样硬化新型受刺激风险基因。
  • 发表日期:2023年12月
  • 期刊:Frontiers in Immunology
  • 影响因子:7.3
  • 中科院分区:医学2区
  • 小类:免疫学2区

摘要

背景
补体成分1q(C1Q)相关基因对人类动脉粥样硬化斑块(HAP)的作用尚不清楚。我们的目标是利用单细胞RNA测序(scRNA-seq)和批量RNA分析来建立与C1Q相关的中心基因,以更有效地诊断和预测HAP患者,并利用双向孟德尔随机化(MR)分析探究C1Q与HAP(缺血性中风)之间的关联。

方法
从基因表达数据共享库(GEO)数据库下载HAP scRNA-seq和批量RNA数据。使用GBM、LASSO和XGBoost算法筛选与C1Q相关的中心基因。我们建立了机器学习模型,使用广义线性模型和接收器工作特征(ROC)分析来诊断和区分动脉粥样硬化的类型。此外,我们使用ssGSEA评分了HALLMARK_COMPLEMENT信号通路,并通过在RAW264.7巨噬细胞和apoE-/-小鼠中进行qRT-PCR确认了中心基因的表达。此外,通过双向MR分析评估了C1Q与HAP之间的风险关联,以C1Q作为暴露因素,以缺血性中风(IS,大动脉动脉粥样硬化)为结果。使用倒数方差加权(IVW)作为主要方法。

结果
我们利用scRNA-seq数据集(GSE159677)识别了24个细胞群和12种细胞类型,并在scRNA-seq和GEO数据集中揭示了七个C1Q相关的差异表达基因(DEGs)。然后,我们使用GBMLASSOXGBoost从这七个DEGs中选择了C1QA和C1QC。我们的研究结果表明,无论是训练队列还是验证队列,都能有效诊断出HPAs患者。此外,我们确认SPI1是负责调节HAP中这两个中心基因的潜在转录因子。我们的分析进一步揭示了HALLMARK_COMPLEMENT信号通路与C1QA和C1QC相关且被激活。我们使用qPCR确认了ox-LDL处理的RAW264.7巨噬细胞和apoE-/-小鼠中C1QA、C1QC和SPI1的高表达水平。MR的结果表明,C1Q的遗传风险与IS之间存在正相关,证据是比值比(OR)为1.118(95%CI:1.013-1.234,P = 0.027)。

结论
作者已经成功开发并验证了一个包含两个基因的HAP新型诊断标志,而MR分析提供了支持C1Q对IS有利关联的证据。

关键词:动脉粥样硬化斑块(AP),ScRNA-seq,孟德尔随机化(MR),补体成分1q(C1q),LASSO

结果


图1 人类AP组织的单细胞RNA测序。

  • (A)对总scRNA-seq数据进行不同分辨率的聚类树分析。
  • (B)使用Seurat包(4.1.2)的“FindAllMarkers”功能绘制了每个群集的前三个标记物。红色框表示C1Q细胞群。
  • (C)T分布随机邻居嵌入(tSNE)在0.8的分辨率下显示了24个聚类。
  • (D)tSNE图被着色显示了12种不同的细胞类型。注意:标记基因位于tSNE图下方。
  • (E)生成并按细胞类型着色的AC和PA组之间的12种细胞类型的概述。
  • (F)使用饼图比较了每个组中细胞类型的比例。
  • (G,H)使用Seurat包(4.1.2)将免疫细胞与其他细胞合并后,使用tSNE和饼图描述了AC和AP组之间的细胞类型。


图2 从scRNA-seq和GEO数据集中选择C1Q中心基因。

  • (A)从C1Q细胞群中提取的前十个基因。
  • (B)这10个基因在scRNA-seq中的AC和PA组之间的781个差异表达基因中检测到,并且得到了七个基因(C1QA、C1QB、C1QC、CCL3、HLA-DPA1、FOLR2和HLA-DQA1)以进行进一步分析。
  • (C)LASSO算法选择C1Q中心基因。
  • (D)GBM算法选择C1Q中心基因。
  • (E)XGBoost算法选择C1Q中心基因。
  • (F)三种算法识别了两个基因(C1QA和C1QC)。


图3 scRNA-seq中特征基因的表达和参与的信号通路。

  • (A-C)图显示了使用scRNA-seq在细胞群中C1QA、C1QC和SPI1的表达。
  • (D)三个特征基因在AC组中上调表达。
  • (E)GSEA显示了所有12个细胞群中的信号通路。
  • (F)KEGG图显示了巨噬细胞群中的KEGG通路。


图4 动脉粥样硬化(AP)进展的诊断预测模型。

  • (A)使用广义线性模型(回归)在GSE43292训练队列中使用两个生物标志物构建的诊断预测模型的混淆矩阵显示实际和预测样本(动脉瘤和完整)。
  • (B)使用ROC曲线评估了训练队列中两个标志物的诊断预测准确性(动脉瘤=32,完整=32,AUC=0.842)。
  • (C)PCoA分析显示这两个标志物可以显著区分动脉瘤和完整样本。
  • (D)使用广义线性模型(回归)在GSE41571外部验证队列中使用两个生物标志物构建的诊断预测模型的混淆矩阵显示实际和预测样本(破裂=5,稳定=6)。
  • (E)使用ROC曲线评估了验证队列中两个标志物的诊断预测准确性(破裂=5,稳定=6,AUC=0.933)。
  • (F)PCoA分析显示这两个标志物可以显著区分破裂样本和稳定样本。
  • (G)使用两个生物标志物构建的诊断预测模型在GSE28829外部验证队列中的实际和预测样本的混淆矩阵显示(进展=13,早期=16)。
  • (H)使用ROC曲线评估了验证队列中两个标志物的诊断预测准确性(进展=13,早期=16,AUC=0.938)。
  • (I)PCoA分析显示这两个标志物可以显著区分进展样本和早期样本。


图5 用于诊断和预测HAP与正常对照组的诊断预测模型。

  • (A)使用两个生物标志物在GSE100927外部验证队列中构建的诊断预测模型的混淆矩阵显示实际和预测样本(动脉粥样硬化=69,正常动脉=35)。
  • (B)使用ROC曲线评估了验证队列中两个标志物的诊断预测准确性(动脉粥样硬化=69,正常动脉=35,AUC=0.899)。
  • (C)PCoA分析显示这两个标志物可以显著区分动脉粥样硬化动脉和正常动脉。
  • (D)使用两个生物标志物在GSE100927_Carotid外部验证队列中构建的诊断预测模型的混淆矩阵显示实际和预测样本(颈动脉=29,正常=12)。
  • (E)使用ROC曲线评估了验证队列中两个标志物的诊断预测准确性(颈动脉=29,正常=12,AUC=0.928)。
  • (F)PCoA分析显示这两个标志物可以显著区分颈动脉动脉粥样硬化和正常动脉。
  • (G)使用两个生物标志物在GEO100927_Femoral外部验证队列中构建的诊断预测模型的混淆矩阵显示实际和预测样本(股动脉=26,正常=12)。
  • (H)使用ROC曲线评估了验证队列中两个多组学标志物的诊断预测准确性(股动脉=26,正常=12,AUC=0.981)。
  • (I)PCoA分析显示这两个标志物可以显著区分股动脉中的AP和正常样本。
  • (J)使用两个生物标志物在GSE100927_Infra外部验证队列中构建的诊断预测模型的混淆矩阵显示实际和预测样本(下肢下部领域=14,正常=11)。
  • (K)使用ROC曲线评估了验证队列中两个标志物的诊断预测准确性(下肢下部领域=14,正常=11,AUC=0.89)。
  • (L)PCoA分析显示这两个标志物可以显著区分下肢下部领域中的AP和正常样本。


图6 基于C1Q中心基因的免疫微环境分析。

  • (A)热图显示了通过8种算法在GSE43292队列中动脉瘤和完整样本之间免疫浸润细胞的富集情况。
  • (B)热图显示了通过8种算法在GSE28829队列中早期和晚期样本之间免疫浸润细胞的富集情况。
  • (C)热图显示了通过8种算法在GSE100927队列中动脉粥样硬化斑块和对照样本之间免疫浸润细胞的富集情况。
  • (D-F)比较了GSE43292(D)、GSE28829(E)和GSE100927(F)数据集中高和低C1Q组之间的基质分数、免疫分数、ESTIMATE分数和斑块纯度。


图7 基于C1Q中心基因的免疫信号通路和免疫调节因子评估。

  • (A-C)比较了GSE43292(A)、GSE28829(B)和GSE100927(C)数据集中高低C1Q组之间的16个免疫信号通路,并对免疫信号通路与C1QA或C1QC之间的相关性进行了分析。
  • (D-F)使用七种算法通过热图分析可视化了免疫调节因子的富集情况,分别在GSE43292(D)、GSE28829(E)和GSE100927(F)数据集中进行。


图8 C1QA激活了HAP中的HALLMARK_COMPLEMENT信号通路。

  • (A-F)C1QA对三个GEO数据集(GSE43292、GSE28829和GSE100927)的GSEA分析结果。


图9 C1QA与HAP中的HALLMARK_COMPLEMENT信号通路相关。

  • C1QA基因与HALLMARK_COMPLEMENT信号通路之间的相关性以及它们在不同数据集中的表达水平和信号通路得分之间的关系


图10 SPI1被确定为HAP中的潜在关键转录因子。

  • (A-C)通过NetworkAnalyst 3.0从三个数据库(ENCODE、JASPAR和ChEA)筛选可能调节C1QA和C1QC基因的潜在转录因子。
  • (D)只有SPI1在所有三个GEO数据集(GSE43292、GSE28829和GSE100927)中的表达显著上调,并被视为C1QA和C1QC基因的潜在转录因子。
  • (E-I)IL-1β、CXCL1、CCL3、CCL4和ABCG1基因在所有三个GEO数据集中均上调表达。


图11 C1QA和C1QC的体外和体内验证。

  • (A-C)实时PCR检测氧化低密度脂蛋白(ox-LDL)处理的RAW264.7巨噬细胞组和正常对照组中C1QA和C1QC的相对mRNA表达水平。
  • (D-H)实时PCR检测apoE小鼠的胸主动脉和腹主动脉以及正常小鼠中C1QA、C1QC、IL1B、SPI1和ABCG1的相对mRNA表达值。
  • (I)这五个基因之间呈正相关关系。
  • (J)C1QA和C1QC基因调节的HAP发展的潜在机制。


图12 C1Q对缺血性中风(IS)的MR分析可视化。

  • (A)C1Q对IS影响的散点图MR分析。
  • (B)C1Q相关单核苷酸多态性(SNPs)对IS的因果效应森林图。
  • (C)对C1Q对IS影响的留一法敏感性分析。
  • (D)漏斗图显示SNPs之间无显著异质性。


图13 缺血性中风(IS)对C1Q的MR分析可视化。

  • (A)IS对C1Q影响的散点图MR分析。
  • (B)IS相关单核苷酸多态性(SNPs)对C1Q的因果效应森林图。
  • (C)对IS对C1Q影响的留一法敏感性分析。
  • (D)漏斗图显示SNPs之间无显著异质性。

小结

  • 主要数据及方法:
TypesNotes
转录组数据scRNA:GSE159677;bulkRNA:GSE28829、、GSE43292、GSE41571、GSE100927
其他数据GWAS:IEU openGWAS
分析方法单细胞标准流程;单细胞的GO、KEGG、GSVA和GSEA(Scillus 包);免疫微环境和信号通路富集(IMvigor210CoreBiologies R);机器学习筛选靶点(GBM、LASSO、XGBoost);ROC曲线;MR
实验技术体外细胞逆转录流程;小鼠建模-qPCR、免疫组化
  • 非常严谨的思路和”充满诚意“的工作量,本质上还是单细胞+bulk的一种分析思路,MR充当验证的角色,其次最大的亮点就是多数据集多维度验证,当然还有着实验加持
  • 文章是好文章,值得学习和借鉴~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/787895.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

rtph264depay插件分析笔记

1、rtp协议头 2、rtp可以基于TCP或者UDP 其中基于TCP需要加4个字节的RTP标志 3、rtph264depay定义解析函数gst_rtp_h264_depay_process,通过RFC 3984文档实现。 static void gst_rtp_h264_depay_class_init (GstRtpH264DepayClass * klass) {GObjectClass *gobject…

AI资讯2024-04-02 | 前微软副总裁姜大昕携「阶跃星辰」入场,出手即万亿参数大模型!

关注文章底部公众号获取每日AI新闻,以及各种好玩的黑科技,如AI换脸,AI数字人,AI生成视频等工具 阶跃星辰发布万亿参数大模型 终于!国内大模型创业公司最后一位强实力玩家入场——阶跃星辰。它是由微软前全球副总裁姜大昕所创办,公司名称也来源于,发了三个大模型:Step-…

当msvcp120.dll文件找不到了要怎么解决?教你靠谱的3种修复msvcp120.dll方法

当出现msvcp120.dll文件丢失的问题时,不用担心,这是一个常见的情况。在日常使用电脑时,误删或受到计算机病毒影响都可能导致这个问题。为了解决这个问题,今天我们将向大家介绍正确的msvcp120.dll修复方法。 一.msvcp120.dll文件是…

体验OceanBase 的binlog service

OceanBase对MySQL具备很好的兼容性。目前,已经发布了开源版的binlog service工具,该工具能够将OceanBase特有的clog模式转换成binlog模式,以便下游工具如canal、flink cdc等使用。今天,我们就来简单体验一下这个binlog service的功…

RA8889/RA8876显示自定义ASCII字符方法

本文介绍用户自己生成的ASCII字库如何通过RA8889/RA8876显示到液晶屏上。 先上一张实例效果图: 再上程序代码: int main(void) {unsigned short x,y;/* System Clocks Configuration */RCC_Configuration(); delay_init(72); GPIO_Configuration(); …

转圈游戏(acwing)

题目描述: n 个小伙伴(编号从 0 到 n−1)围坐一圈玩游戏。 按照顺时针方向给 n 个位置编号,从 0 到 n−1。 最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,…

前端学习<二>CSS基础——17-CSS3的常见边框汇总

CSS3 常见边框汇总 <!DOCTYPE html><html lang"en"><head><meta charset"UTF-8"><title>CSS3 边框</title><style>body, ul, li, dl, dt, dd, h1, h2, h3, h4, h5 {margin: 0;padding: 0;}​body {background-c…

治愈风景视频素材在哪找?日落风景、伤感风景、江南风景这里都有

在这个视频内容为王的时代&#xff0c;做个爆款视频好比烹饪一道米其林三星级大餐&#xff0c;少了那么一点儿神秘的调料&#xff0c;总觉得差了点味道。我&#xff0c;一个在视频剪辑战场上摸爬滚打多年的老兵&#xff0c;今天就来跟大家分享几个找素材的秘密武器&#xff0c;…

STM32应用开发——使用PWM+DMA驱动WS2812

STM32应用开发——使用PWMDMA驱动WS2812 目录 STM32应用开发——使用PWMDMA驱动WS2812前言1 硬件介绍1.1 WS2812介绍1.1.1 芯片简介1.1.2 引脚描述1.1.3 工作原理1.1.4 时序1.1.5 传输协议 1.2 电路设计 2 软件编程2.1 软件原理2.2 测试代码2.2.1 底层驱动2.2.2 灯效应用 2.3 运…

leetcode二叉树相关题目

目录 二叉树的建立整数数组转二叉树Object数组转二叉树 二叉树的遍历leetcode94.二叉树的中序遍历leetcode144.二叉树的前序遍历 二叉树的建立 整数数组转二叉树 下面只是一个简单的示例&#xff0c;没考虑某个子树为空的情况。把{1, 2, 3, 21, 22, 31, 32} 转变为一个二叉树…

系统IO函数接口

目录 前言 一. man手册 1.1 man手册如何查询 1.2 man手册基础 二.系统IO函数接口 三.open打开文件夹 3.1 例1 open打开文件 3.2 open打开文件代码 3.3 例2 创建文件 四.write写文件 4.1 write写文件 五. read读文件 5.1 read读文件与偏移 5.2 偏移细节 5.3 read读文件代码 六.复…

3.5网安学习第三阶段第五周回顾(个人学习记录使用)

本周重点 ①SSRF服务器端请求伪造 ②序列化和反序列化 ③Vaudit代码审计 本周主要内容 ①SSRF服务器端请求伪造 一、概述 SSRF: server site request forgery (服务器端请求伪造)。 SSR: 服务端请求&#xff0c;A服务器通过函数向B服务器发送请求。 SSRF发生的前提条件…

《QT实用小工具·三》偏3D风格的异型窗体

1、概述 源码放在文章末尾 可以在窗体中点击鼠标左键进行图片切换&#xff0c;项目提供了一些图片素材&#xff0c;整体风格偏向于3D类型&#xff0c;也可以根据需求自己放置不同的图片。 下面是demo演示&#xff1a; 项目部分代码如下所示&#xff1a; 头文件部分&#xff…

Linux安装Tomcat保姆级教程

文章目录 前言一、安装JDK二、Tomcat下载三、Tomcat安装1.创建Tomcat的安装目录2.切换到Tomcat的安装目录3.上传Tomcat安装包4.解压缩5.切换到安装好的tomcat的bin目录6.启动tomcat7.网络请求测试 四、外部电脑访问nginx设置方法一&#xff1a;关闭防火墙方法二&#xff1a;添加…

Java反射系列(3):从spring反射工具ReflectionUtils说起

目录 传送门 兼容性引发的"血案" ReflectionUtils的原理 目的有三 ReflectionUtils的API使用 Method getAllDeclaredMethods findMethod invokeMethod Field getDeclaredFields findField getField makeAccessible Constructor accessibleConstructo…

Spring IoCDI(2)

IoC详解 通过上面的案例, 我们已经知道了IoC和DI的基本操作, 接下来我们来系统地学习Spring IoC和DI的操作. 前面我们提到的IoC控制反转, 就是将对象的控制权交给Spring的IoC容器, 由IoC容器创建及管理对象. (也就是Bean的存储). Bean的存储 我们之前只讲到了Component注解…

vscode安装

&#x1f308;个人主页&#xff1a;Rookie Maker &#x1f3c6;&#x1f3c6;关注博主&#xff0c;随时获取更多关于IT的优质内容&#xff01;&#x1f3c6;&#x1f3c6; &#x1f600;欢迎来到小田代码世界~ &#x1f601; 喜欢的小伙伴记得一键三连哦 ૮(˶ᵔ ᵕ ᵔ˶)ა …

商场促销--策略模式

1.1 商场收银软件 package com.lhx.design.pattern.test;import java.util.Scanner;public class Test {public static void main(String[] args){System.out.println("**********************************************"); System.out.println("《大话设计模式…

vue3鼠标向下滑动,导航条改变背景颜色和logo的封装

代码中使用了element-plus组件&#xff0c;需先安装 向下滑动前 向下滑动后&#xff08;改变了logo 字体 背景颜色&#xff09; <script lang"ts" setup> import router from /router; import { ArrowDown } from element-plus/icons-vue import { ref, …

【tensorflow框架神经网络实现鸢尾花分类—优化器】

文章目录 1、前言2、神经网络参数优化器2.1、SGD2.2、SGDM2.3、Adagrad2.4、RMSProp2.5、Adam 3、实验对比不同优化器4、结果对比 1、前言 此前&#xff0c;在【tensorflow框架神经网络实现鸢尾花分类】一文中使用梯度下降算法SGD&#xff0c;对权重 w w w和偏置 b b b进行更新…