【SQL Server】2. 将数据导入导出到Excel表格当中

最开始,博主介绍一下自己的环境:SQL Sever 2008 R2
SQL Sever 大致都差不多

1. 通过自带软件的方式

首先找到下载SQL Sever中提供的导入导出工具
在这里插入图片描述
在这里插入图片描述
如果开始界面没有找到自己下载的路径
C:\Program Files\Microsoft SQL Server\100\DTS\Binn下的DTSWizard.exe文件
在这里插入图片描述

导出

1.1 打开界面

在这里插入图片描述

1.2 选择自己的数据源和数据库

在这里插入图片描述

1.3 选择导出目标

这里博主导出到Excel文件当中
在这里插入图片描述

1.4 选择直接导出数据还是进行查询

在这里插入图片描述
查询的话将自己在SSMS上编写的SQL语句直接复制到框中即可(确保SQL正确,可以进行测试!)
这里博主直接导出表中数据

1.5 选择表目标

在这里插入图片描述
这里需要切记表的分隔符为:
行:{CR}{LF}
列:制表符

格式不对,可能导出的结构出错
(也就是不按照行列的方式导入到Excel当中!)

1.6 完成导出

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.7 检查是否导出成功

在这里插入图片描述
可以看到Excel表格中出现新数据!

导入

1.1 打开界面

在这里插入图片描述

1.2 选择数据源

这里博主选择的是Excel表格
这里的标题分隔符选{CR}{LF}
这里博主前面有6行垃圾数据(所以选择跳过6行)
在这里插入图片描述
行分隔符{CR}{LF}
列分隔符制表符
在这里插入图片描述

1.3 选择导入目标数据库

选择自己的服务器和数据库
在这里插入图片描述

1.4 选择表

导入的目标表
在这里插入图片描述

1.5 选择数据类型映射

在这里插入图片描述

1.6 完成导入

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.7 检查是否导入成功

选择SSMS工具
在这里插入图片描述
打开对应的表和数据行
在这里插入图片描述
查看数据,可以看到数据导入成功!
在这里插入图片描述

SQL Sever 2008 R2 存在的问题:

这是SQLSever2008R2所独有的,其他版本不清楚,自行了解!
对于还未和SQL Sever数据库建立过链接的新建Excel表格无法导入导出数据!
所以咱们需要先让Excel表格和数据库建立连接

1.1 随便找个表查看表中数据

在这里插入图片描述
在这里插入图片描述

1.2 选择将结果保存到文件

右键SQL语句框出现如下界面
在这里插入图片描述

1.3 右键选择执行

在这里插入图片描述

1.4 保存结果

在这里插入图片描述

1.5 查看文件

在这里插入图片描述
可以看到Excel文件中出现了数据,但是这些数据无法分析(无效数据),将这些数据删除就可以正常进行导入导出。

2. 通过Pycharm(ODBC)的方式

代码如下所示:

import pyodbc
import pandas as pd
# 创建连接字符串
conn_str = (r'DRIVER={SQL Server Native Client 10.0};'r'SERVER=BF-202403241716;'r'DATABASE=scott;'r'Trusted_Connection=Yes;'
)
# 建立连接
cnxn = pyodbc.connect(conn_str)
# 创建游标对象
cursor = cnxn.cursor()
# 执行SQL查询
query = "SELECT * FROM dbo.salgrade"
cursor.execute(query)
# 获取查询结果
data1 = cursor.fetchall()
print(type(data1))
print(data1)# 获取列名
columns1 = [column[0] for column in cursor.description]
print(type(columns1))
print(columns1)# 将元组列表展开为一维数组
data1 = [list(item) for item in data1]
print(type(data1))
print(data1)# 将结果转换为DataFrame
df1 = pd.DataFrame(data1, columns=columns1)
print(df1)# 将数据写入Excel文件
df1.to_excel('output.xlsx', index=False)# 关闭数据库连接
cursor.close()
cnxn.close()

关键点1:连接方式

数据库是:SQL Sever 2008 R2 所以这里采用的连接方式是SQL Sever Native Client 10.0 如果是更新的版本应该是16或者其他
(可以问问ChartGPT)

# 创建连接字符串
conn_str = (r'DRIVER={SQL Server Native Client 10.0};'r'SERVER=BF-202403241716;'r'DATABASE=scott;'r'Trusted_Connection=Yes;'
)

具体的服务器和数据库按照自己的来,这里我SQL Sever通过验证的方式是Windows验证,所以这里r'Trusted_Connection=Yes;' 如果有用户密码,请使用用户密码的方式登录。

关键点2:元组列表需要转换为一维数组(???)

# 将元组列表展开为一维数组
data1 = [list(item) for item in data1]
print(type(data1))
print(data1)
<class 'list'>
[(1, 700, 1200), (2, 1201, 1400), (3, 1401, 2000), (4, 2001, 3000), (5, 3001, 9999)]
<class 'list'>
[[1, 700, 1200], [2, 1201, 1400], [3, 1401, 2000], [4, 2001, 3000], [5, 3001, 9999]]grade  losal  hisal
0      1    700   1200
1      2   1201   1400
2      3   1401   2000
3      4   2001   3000
4      5   3001   9999

需要将元组列表展开为一维数组
原因:data1 是一个包含元组的列表,每个元组都是一个行,但是传递给DataFrame的每行数据应该是一维的,如果不进行转换,那么传递的数据就是二维的
在这里插入图片描述
会出现如下类型不匹配的报错==(解决了半天,还是有点不理解)==

import pyodbc
import pandas as pd# 假设data是cursor.fetchall()返回的结果,它是一个包含元组的列表
data = [(1, 700, 1200), (2, 1201, 1400), (3, 1401, 2000), (4, 2001, 3000), (5, 3001, 9999)]
print(type(data))
print(data)
# 获取列名
columns = ['grade', 'losal', 'hisal']  # 确保这些列名与您的表中的列名相匹配
print(type(columns))
print(columns)# 将结果转换为DataFrame
df = pd.DataFrame(list(data), columns=columns)
print(df)

在这里插入图片描述
code2当中代码如上,同样还是一个包含元组的列表,但是就是可以转换成DataFrame的形式==(很奇怪啊)==

关键点3:import导包

如果直接从官网进行下载的话,速度可能会很慢,而且有时候还会断开连接,所以可以选择一些国内的镜像网站

pip install some-package -i https://pypi.tuna.tsinghua.edu.cn/simple

以下这种方式就很慢:

(.venv) PS D:\code\test_3_29> pip install openpyxl
Collecting openpyxlDownloading openpyxl-3.1.2-py2.py3-none-any.whl.metadata (2.5 kB)
Collecting et-xmlfile (from openpyxl)Downloading et_xmlfile-1.1.0-py3-none-any.whl.metadata (1.8 kB)
Downloading openpyxl-3.1.2-py2.py3-none-any.whl (249 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 250.0/250.0 kB 547.4 kB/s eta 0:00:00
Downloading et_xmlfile-1.1.0-py3-none-any.whl (4.7 kB)
Installing collected packages: et-xmlfile, openpyxl
Successfully installed et-xmlfile-1.1.0 openpyxl-3.1.2

成功结果如下:
在这里插入图片描述
在这里插入图片描述
方法放在gitee上了,自取哟!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/786952.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

整理开源资源:零代码开发灵魂——逻辑引擎,收藏吧

逻辑配置是零代码开发的业务核心功能&#xff0c;本质上是实现服务的编排&#xff0c;把原子的服务通过可视化编排&#xff0c;形成最终的业务逻辑。 经过小编的精心整理&#xff0c;把相关的资源全部汇总起来&#xff0c;收藏吧&#xff01; Drawflow 拖动节点多路输入/输出…

增强Java技能:使用OkHttp下载www.dianping.com信息

在这篇技术文章中&#xff0c;我们将探讨如何使用Java和OkHttp库来下载并解析www.dianping.com上的商家信息。我们的目标是获取商家名称、价格、评分和评论&#xff0c;并将这些数据存储到CSV文件中。此外&#xff0c;我们将使用爬虫代理来绕过任何潜在的IP限制&#xff0c;并实…

python3内置持久化模块shelve心得

python3内置持久化模块shelve心得 来自python官方网站的解释&#xff1a; https://docs.python.org/zh-cn/3.10/library/shelve.html 本文环境&#xff1a; Windows 10 专业版 64 位 Thonny 3.2.6 概述 内置模块 shelve 可以将任意 Python 对象&#xff08;即 https://docs…

基于FPGA的HDMI视频接口设计

HDMI介绍 HDMI(High-DefinitionMultimedia Interface)又被称为高清晰度多媒体接口,是首个支持在单线缆上传输,不经过压缩的全数字高清晰度、多声道音频和智能格式与控制命令数据的数字接口。HDMI接口由Silicon Image美国晶像公司倡导,联合索尼、日立、松下、飞利浦、汤姆逊、东…

LLM面面观之MoE

1. 背景 根据本qiang~最新的趋势观察&#xff0c;基于MoE架构的开源大模型越来越多&#xff0c;比如马斯克的Grok-1(314B), Qwen1.5-MoE-A2.7B等&#xff0c;因此想探究一下MoE里面的部分细节。 此文是本qiang~针对大语言模型的MoE的整理&#xff0c;包括原理、流程及部分源码…

Mybatis——查询数据

查询操作 根据用户id查询单条记录&#xff0c;在映射器接口(UserMapper)中定义如下方法&#xff1a; package org.example.mapper;import org.example.demo.User;import java.util.List;public interface UserMapper {//根据id查询UserUser selectUserById(Integer userId); …

stable diffusion 的 GPU 不足怎么解决

稳定扩散&#xff08;stable diffusion&#xff09;是一种用于图像处理和计算机视觉任务的图像滤波算法。 当使用Stable Diffusion过程中遇到GPU显示内存不足的问题时。解决这个问题的方法有以下几种&#xff1a; 目前&#xff0c;对我来说&#xff0c;就最后一点能够暂时解决当…

GaussDB云数据库极简版安装与使用-新手指南

一、前言 作为一款领先的企业级数据库管理系统&#xff0c;GaussDB 提供了强大的性能、高度可靠性和丰富的功能&#xff0c;是企业构建可靠、高性能的数据库解决方案的理想选择。 本文主要针对高校和个人测试环境&#xff0c;介绍极简版安装和使用过程&#xff0c;更加适合高…

SwiftUI Swift 选择图片 添加图片

1. 添加记帐时添加图片功能 2. Show me the code // // TestPhotoPicker.swift // pandabill // // Created by 朱洪苇 on 2024/3/30. //import SwiftUI import PhotosUI import Foundationstruct TestPhotoPicker: View {State private var selectedItem: PhotosPickerIt…

Php_Code_challenge12

题目&#xff1a; 答案&#xff1a; 解析&#xff1a; 字符串拼接。

文献阅读:通过 NeuronChat 从单细胞转录组推断神经元-神经元通信

文献介绍 「文献题目」 Inferring neuron-neuron communications from single-cell transcriptomics through NeuronChat 「研究团队」 聂青&#xff08;加利福尼亚大学欧文分校&#xff09; 「发表时间」 2023-02-28 「发表期刊」 Nature Communications 「影响因子」 16.6…

15 - grace序列处理 - 十三点滑动平均法

grace序列处理 -十三点滑动平均法 滑动平均是一种常用的平滑数据的方法,可以用于去除噪声或者提取趋势。十三点滑动平均是指使用窗口大小为13的滑动平均,应用于GRACE序列处理中可以去除周年项的影响。 十三点滑动平均的计算公式为: y [ n ] = ( x [ n − 6 ]

互联网轻量级框架整合之JavaEE基础I

不得不解释得几个概念 JavaEE SUN公司提出来的企业版Java开发中间件&#xff0c;主要用于企业级互联网系统的框架搭建&#xff0c;同时因为Java语言优质的平台无关性、可移植性、健壮性、支持多线程和安全性等优势&#xff0c;其迅速成为构建企业互联网平台的主流技术&#x…

基于UML的系统分析与设计

统一建模语言(Unified Modeling Language&#xff0c;UML)是一种为面向对象系统的产品进行说明、可视化和编制文档的一种标准语言&#xff0c;是非专利的第三代建模和规约语言。UML是面向对象设计的建模工具&#xff0c;独立于任何具体程序设计语言。 毕业设计是实现本科教学培…

Php_Code_challenge16

题目&#xff1a; 答案&#xff1a; 解析&#xff1a; 所以科学计数法绕过即可。

macOS Sonoma 14.4 23E214 VMware系统包下载地址,简单便捷,导入即可用!

这回分享的是VMware虚拟机macOS 14.4版本的系统包&#xff0c;这种系统包是已经在VMware虚拟机中安装好了的macOS系统。省去了繁琐的安装步骤与稍微漫长的等待时间。此次更新的包为诗林工作室制作的最新一个VMware系统包版本。分享给那些想快速体验macOS 14版本的朋友。 使用方…

C++ AVL树(旋转)

我们之前学习了搜索二叉树&#xff0c;我们知道普通的搜索二叉树会有特殊情况出现使得二叉树的两枝极其不平衡形成我们通俗说的歪脖子树&#xff1a; 这样的树一定会使得我们的增删查的效率变低&#xff1b;为了避免这种极端的情况出现&#xff0c;在1962年有两位伟大的俄罗斯数…

EasyExcel 复杂表头的导出(动态表头和静态表头)

问题&#xff1a;如图&#xff0c;1部分的表头是动态的根据日期变化&#xff0c;2部分是数据库对应的字段&#xff0c;静态不变的&#xff1b; 解决方案&#xff1a;如果不看1的部分&#xff0c;2部分内容可以根据实体类注解的方式导出&#xff0c;那么我们是不是可以先将动态表…

Centos7 安装 Oracle19c

下载oracle预安装包 wget http://yum.oracle.com/repo/OracleLinux/OL7/latest/x86_64/getPackage/oracle-database-preinstall-19c-1.0-1.el7.x86_64.rpm 下载19c安装包 https://www.oracle.com/cn/database/technologies/oracle-database-software-downloads.html#19c 选择…

计算机网络-HTTP相关知识-HTTPS基础

HTTP与HTTPS的区别&#xff1a; HTTPS在TCP和HTTP网络层之间加入了SSL/TLS安全协议层。这个安全协议层可以对数据进行加密&#xff0c;确保数据在传输过程中的安全。HTTPS在TCP三次握手之后&#xff0c;还需进行SSL/TLS的握手过程。这个握手过程主要是为了在客户端和服务器之间…