【SQL Server】2. 将数据导入导出到Excel表格当中

最开始,博主介绍一下自己的环境:SQL Sever 2008 R2
SQL Sever 大致都差不多

1. 通过自带软件的方式

首先找到下载SQL Sever中提供的导入导出工具
在这里插入图片描述
在这里插入图片描述
如果开始界面没有找到自己下载的路径
C:\Program Files\Microsoft SQL Server\100\DTS\Binn下的DTSWizard.exe文件
在这里插入图片描述

导出

1.1 打开界面

在这里插入图片描述

1.2 选择自己的数据源和数据库

在这里插入图片描述

1.3 选择导出目标

这里博主导出到Excel文件当中
在这里插入图片描述

1.4 选择直接导出数据还是进行查询

在这里插入图片描述
查询的话将自己在SSMS上编写的SQL语句直接复制到框中即可(确保SQL正确,可以进行测试!)
这里博主直接导出表中数据

1.5 选择表目标

在这里插入图片描述
这里需要切记表的分隔符为:
行:{CR}{LF}
列:制表符

格式不对,可能导出的结构出错
(也就是不按照行列的方式导入到Excel当中!)

1.6 完成导出

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.7 检查是否导出成功

在这里插入图片描述
可以看到Excel表格中出现新数据!

导入

1.1 打开界面

在这里插入图片描述

1.2 选择数据源

这里博主选择的是Excel表格
这里的标题分隔符选{CR}{LF}
这里博主前面有6行垃圾数据(所以选择跳过6行)
在这里插入图片描述
行分隔符{CR}{LF}
列分隔符制表符
在这里插入图片描述

1.3 选择导入目标数据库

选择自己的服务器和数据库
在这里插入图片描述

1.4 选择表

导入的目标表
在这里插入图片描述

1.5 选择数据类型映射

在这里插入图片描述

1.6 完成导入

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.7 检查是否导入成功

选择SSMS工具
在这里插入图片描述
打开对应的表和数据行
在这里插入图片描述
查看数据,可以看到数据导入成功!
在这里插入图片描述

SQL Sever 2008 R2 存在的问题:

这是SQLSever2008R2所独有的,其他版本不清楚,自行了解!
对于还未和SQL Sever数据库建立过链接的新建Excel表格无法导入导出数据!
所以咱们需要先让Excel表格和数据库建立连接

1.1 随便找个表查看表中数据

在这里插入图片描述
在这里插入图片描述

1.2 选择将结果保存到文件

右键SQL语句框出现如下界面
在这里插入图片描述

1.3 右键选择执行

在这里插入图片描述

1.4 保存结果

在这里插入图片描述

1.5 查看文件

在这里插入图片描述
可以看到Excel文件中出现了数据,但是这些数据无法分析(无效数据),将这些数据删除就可以正常进行导入导出。

2. 通过Pycharm(ODBC)的方式

代码如下所示:

import pyodbc
import pandas as pd
# 创建连接字符串
conn_str = (r'DRIVER={SQL Server Native Client 10.0};'r'SERVER=BF-202403241716;'r'DATABASE=scott;'r'Trusted_Connection=Yes;'
)
# 建立连接
cnxn = pyodbc.connect(conn_str)
# 创建游标对象
cursor = cnxn.cursor()
# 执行SQL查询
query = "SELECT * FROM dbo.salgrade"
cursor.execute(query)
# 获取查询结果
data1 = cursor.fetchall()
print(type(data1))
print(data1)# 获取列名
columns1 = [column[0] for column in cursor.description]
print(type(columns1))
print(columns1)# 将元组列表展开为一维数组
data1 = [list(item) for item in data1]
print(type(data1))
print(data1)# 将结果转换为DataFrame
df1 = pd.DataFrame(data1, columns=columns1)
print(df1)# 将数据写入Excel文件
df1.to_excel('output.xlsx', index=False)# 关闭数据库连接
cursor.close()
cnxn.close()

关键点1:连接方式

数据库是:SQL Sever 2008 R2 所以这里采用的连接方式是SQL Sever Native Client 10.0 如果是更新的版本应该是16或者其他
(可以问问ChartGPT)

# 创建连接字符串
conn_str = (r'DRIVER={SQL Server Native Client 10.0};'r'SERVER=BF-202403241716;'r'DATABASE=scott;'r'Trusted_Connection=Yes;'
)

具体的服务器和数据库按照自己的来,这里我SQL Sever通过验证的方式是Windows验证,所以这里r'Trusted_Connection=Yes;' 如果有用户密码,请使用用户密码的方式登录。

关键点2:元组列表需要转换为一维数组(???)

# 将元组列表展开为一维数组
data1 = [list(item) for item in data1]
print(type(data1))
print(data1)
<class 'list'>
[(1, 700, 1200), (2, 1201, 1400), (3, 1401, 2000), (4, 2001, 3000), (5, 3001, 9999)]
<class 'list'>
[[1, 700, 1200], [2, 1201, 1400], [3, 1401, 2000], [4, 2001, 3000], [5, 3001, 9999]]grade  losal  hisal
0      1    700   1200
1      2   1201   1400
2      3   1401   2000
3      4   2001   3000
4      5   3001   9999

需要将元组列表展开为一维数组
原因:data1 是一个包含元组的列表,每个元组都是一个行,但是传递给DataFrame的每行数据应该是一维的,如果不进行转换,那么传递的数据就是二维的
在这里插入图片描述
会出现如下类型不匹配的报错==(解决了半天,还是有点不理解)==

import pyodbc
import pandas as pd# 假设data是cursor.fetchall()返回的结果,它是一个包含元组的列表
data = [(1, 700, 1200), (2, 1201, 1400), (3, 1401, 2000), (4, 2001, 3000), (5, 3001, 9999)]
print(type(data))
print(data)
# 获取列名
columns = ['grade', 'losal', 'hisal']  # 确保这些列名与您的表中的列名相匹配
print(type(columns))
print(columns)# 将结果转换为DataFrame
df = pd.DataFrame(list(data), columns=columns)
print(df)

在这里插入图片描述
code2当中代码如上,同样还是一个包含元组的列表,但是就是可以转换成DataFrame的形式==(很奇怪啊)==

关键点3:import导包

如果直接从官网进行下载的话,速度可能会很慢,而且有时候还会断开连接,所以可以选择一些国内的镜像网站

pip install some-package -i https://pypi.tuna.tsinghua.edu.cn/simple

以下这种方式就很慢:

(.venv) PS D:\code\test_3_29> pip install openpyxl
Collecting openpyxlDownloading openpyxl-3.1.2-py2.py3-none-any.whl.metadata (2.5 kB)
Collecting et-xmlfile (from openpyxl)Downloading et_xmlfile-1.1.0-py3-none-any.whl.metadata (1.8 kB)
Downloading openpyxl-3.1.2-py2.py3-none-any.whl (249 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 250.0/250.0 kB 547.4 kB/s eta 0:00:00
Downloading et_xmlfile-1.1.0-py3-none-any.whl (4.7 kB)
Installing collected packages: et-xmlfile, openpyxl
Successfully installed et-xmlfile-1.1.0 openpyxl-3.1.2

成功结果如下:
在这里插入图片描述
在这里插入图片描述
方法放在gitee上了,自取哟!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/786952.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

整理开源资源:零代码开发灵魂——逻辑引擎,收藏吧

逻辑配置是零代码开发的业务核心功能&#xff0c;本质上是实现服务的编排&#xff0c;把原子的服务通过可视化编排&#xff0c;形成最终的业务逻辑。 经过小编的精心整理&#xff0c;把相关的资源全部汇总起来&#xff0c;收藏吧&#xff01; Drawflow 拖动节点多路输入/输出…

增强Java技能:使用OkHttp下载www.dianping.com信息

在这篇技术文章中&#xff0c;我们将探讨如何使用Java和OkHttp库来下载并解析www.dianping.com上的商家信息。我们的目标是获取商家名称、价格、评分和评论&#xff0c;并将这些数据存储到CSV文件中。此外&#xff0c;我们将使用爬虫代理来绕过任何潜在的IP限制&#xff0c;并实…

python3内置持久化模块shelve心得

python3内置持久化模块shelve心得 来自python官方网站的解释&#xff1a; https://docs.python.org/zh-cn/3.10/library/shelve.html 本文环境&#xff1a; Windows 10 专业版 64 位 Thonny 3.2.6 概述 内置模块 shelve 可以将任意 Python 对象&#xff08;即 https://docs…

07. 【Android教程】Android 线性布局 LinearLayout

在上一节中&#xff0c;我们讲到了所有的 Layout 都是从 ViewGroup 继承而来&#xff0c;它可以包含若干 View 并按照指定的规则将这个 View 摆放到屏幕上。那么接下来的章节我们就来学习一下 Android 的 UI 布局&#xff0c;Android 原生有六大布局&#xff0c;分别是: Linear…

基于FPGA的HDMI视频接口设计

HDMI介绍 HDMI(High-DefinitionMultimedia Interface)又被称为高清晰度多媒体接口,是首个支持在单线缆上传输,不经过压缩的全数字高清晰度、多声道音频和智能格式与控制命令数据的数字接口。HDMI接口由Silicon Image美国晶像公司倡导,联合索尼、日立、松下、飞利浦、汤姆逊、东…

LLM面面观之MoE

1. 背景 根据本qiang~最新的趋势观察&#xff0c;基于MoE架构的开源大模型越来越多&#xff0c;比如马斯克的Grok-1(314B), Qwen1.5-MoE-A2.7B等&#xff0c;因此想探究一下MoE里面的部分细节。 此文是本qiang~针对大语言模型的MoE的整理&#xff0c;包括原理、流程及部分源码…

Mybatis——查询数据

查询操作 根据用户id查询单条记录&#xff0c;在映射器接口(UserMapper)中定义如下方法&#xff1a; package org.example.mapper;import org.example.demo.User;import java.util.List;public interface UserMapper {//根据id查询UserUser selectUserById(Integer userId); …

对称二叉树_递归_java

对称二叉树 leetcode链接 问题描述 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 提示&#xff1a; 树中节点数目在范围 [1, 1000] 内 -100 < Node.val < 100 示例 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;…

stable diffusion 的 GPU 不足怎么解决

稳定扩散&#xff08;stable diffusion&#xff09;是一种用于图像处理和计算机视觉任务的图像滤波算法。 当使用Stable Diffusion过程中遇到GPU显示内存不足的问题时。解决这个问题的方法有以下几种&#xff1a; 目前&#xff0c;对我来说&#xff0c;就最后一点能够暂时解决当…

GaussDB云数据库极简版安装与使用-新手指南

一、前言 作为一款领先的企业级数据库管理系统&#xff0c;GaussDB 提供了强大的性能、高度可靠性和丰富的功能&#xff0c;是企业构建可靠、高性能的数据库解决方案的理想选择。 本文主要针对高校和个人测试环境&#xff0c;介绍极简版安装和使用过程&#xff0c;更加适合高…

python多线程简单示例

Python的多线程可以帮助你在同一个进程中运行多个线程&#xff08;即任务&#xff09;&#xff0c;这样可以在执行IO密集型或高延迟的操作时提高程序的效率。下面是一个简单的Python多线程教程。 1. 引入threading模块 Python的threading模块提供了一个简单的方式来创建和管理…

如何在VSCode中高效使用Git:完全指南

引言 在软件开发领域&#xff0c;版本控制是一个至关重要的概念。它不仅仅是一个程序员的工具&#xff0c;更是团队协作、项目管理和代码质量保证的关键。随着软件开发项目的复杂性不断增加&#xff0c;版本控制系统的作用变得愈发显著。 Git作为目前最流行的分布式版本控制系…

SwiftUI Swift 选择图片 添加图片

1. 添加记帐时添加图片功能 2. Show me the code // // TestPhotoPicker.swift // pandabill // // Created by 朱洪苇 on 2024/3/30. //import SwiftUI import PhotosUI import Foundationstruct TestPhotoPicker: View {State private var selectedItem: PhotosPickerIt…

golang语言系列:SOLID、YAGNI、KISS等设计原则

云原生学习路线导航页&#xff08;持续更新中&#xff09; 本文是 golang语言系列 文章&#xff0c;主要对编程通用技能 SOLID、YAGNI、KISS等设计原则 进行学习 1.SOLID设计原则 S&#xff1a;SRP&#xff0c;单一职责原则O&#xff1a;OCP&#xff0c;开闭原则L&#xff1a;…

PCL拟合并绘制平面和柱面(三)

PCL绘制自定义图形 在使用PCL拟合平面和柱面后&#xff0c;需要绘制自定义大小和位置的平面和柱面以便于可视化。 //拟合类型 enum FitType {FitPlane 1, //平面FitCylinder 2 //圆柱 };主要函数&#xff1a; void PointCloudViewer(PointCloudT::Ptr cloudseg, PointC…

Php_Code_challenge12

题目&#xff1a; 答案&#xff1a; 解析&#xff1a; 字符串拼接。

文献阅读:通过 NeuronChat 从单细胞转录组推断神经元-神经元通信

文献介绍 「文献题目」 Inferring neuron-neuron communications from single-cell transcriptomics through NeuronChat 「研究团队」 聂青&#xff08;加利福尼亚大学欧文分校&#xff09; 「发表时间」 2023-02-28 「发表期刊」 Nature Communications 「影响因子」 16.6…

15 - grace序列处理 - 十三点滑动平均法

grace序列处理 -十三点滑动平均法 滑动平均是一种常用的平滑数据的方法,可以用于去除噪声或者提取趋势。十三点滑动平均是指使用窗口大小为13的滑动平均,应用于GRACE序列处理中可以去除周年项的影响。 十三点滑动平均的计算公式为: y [ n ] = ( x [ n − 6 ]

互联网轻量级框架整合之JavaEE基础I

不得不解释得几个概念 JavaEE SUN公司提出来的企业版Java开发中间件&#xff0c;主要用于企业级互联网系统的框架搭建&#xff0c;同时因为Java语言优质的平台无关性、可移植性、健壮性、支持多线程和安全性等优势&#xff0c;其迅速成为构建企业互联网平台的主流技术&#x…

关于Linux系统中Python核心包的重要性和恢复误卸载软件的方法

&#xff08;首发地址&#xff1a;学习日记 https://www.learndiary.com/2024/04/dont-remove-system-python/&#xff09; 大家好&#xff0c;我是来自淘宝网“学习日记小店”的 learndiary&#xff0c;专注于提供 Linux 相关的技术服务。昨日&#xff0c;一位使用 Ubuntu 20…