黑马头条 热点文章实时计算、kafkaStream

  热点文章-实时计算

1 今日内容

1.1 定时计算与实时计算

1.2 今日内容

kafkaStream

  • 什么是流式计算
  • kafkaStream概述
  • kafkaStream入门案例
  • Springboot集成kafkaStream

实时计算

  • 用户行为发送消息
  • kafkaStream聚合处理消息
  • 更新文章行为数量
  • 替换热点文章数据

2 实时流式计算

2.1 概念

一般流式计算会与批量计算相比较。在流式计算模型中,输入是持续的,可以认为在时间上是无界的,也就意味着,永远拿不到全量数据去做计算。同时,计算结果是持续输出的,也即计算结果在时间上也是无界的。流式计算一般对实时性要求较高,同时一般是先定义目标计算,然后数据到来之后将计算逻辑应用于数据。同时为了提高计算效率,往往尽可能采用增量计算代替全量计算。

流式计算就相当于上图的右侧扶梯,是可以源源不断的产生数据,源源不断的接收数据,没有边界。

2.2 应用场景

  • 日志分析

网站的用户访问日志进行实时的分析,计算访问量,用户画像,留存率等等,实时的进行数据分析,帮助企业进行决策

  • 大屏看板统计

可以实时的查看网站注册数量,订单数量,购买数量,金额等。

  • 公交实时数据

可以随时更新公交车方位,计算多久到达站牌

  • 实时文章分值计算

头条类文章的分值计算,通过用户的行为实时文章的分值,分值越高就越被推荐。

2.3 技术方案选型

  • Hadoop

  • Apche Storm

Storm 是一个分布式实时大数据处理系统,可以帮助我们方便地处理海量数据,具有高可靠、高容错、高扩展的特点。是流式框架,有很高的数据吞吐能力。

  • Kafka Stream

可以轻松地将其嵌入任何Java应用程序中,并与用户为其流应用程序所拥有的任何现有打包,部署和操作工具集成。

3 Kafka Stream

3.1 概述

Kafka Stream是Apache Kafka从0.10版本引入的一个新Feature。它是提供了对存储于Kafka内的数据进行流式处理和分析的功能。

Kafka Stream的特点如下:

  • Kafka Stream提供了一个非常简单而轻量的Library,它可以非常方便地嵌入任意Java应用中,也可以任意方式打包和部署
  • 除了Kafka外,无任何外部依赖
  • 充分利用Kafka分区机制实现水平扩展和顺序性保证
  • 通过可容错的state store实现高效的状态操作(如windowed join和aggregation)
  • 支持正好一次处理语义
  • 提供记录级的处理能力,从而实现毫秒级的低延迟
  • 支持基于事件时间的窗口操作,并且可处理晚到的数据(late arrival of records)
  • 同时提供底层的处理原语Processor(类似于Storm的spout和bolt),以及高层抽象的DSL(类似于Spark的map/group/reduce)

3.2 Kafka Streams的关键概念

  • 源处理器(Source Processor):源处理器是一个没有任何上游处理器的特殊类型的流处理器。它从一个或多个kafka主题生成输入流。通过消费这些主题的消息并将它们转发到下游处理器。
  • Sink处理器:sink处理器是一个没有下游流处理器的特殊类型的流处理器。它接收上游流处理器的消息发送到一个指定的Kafka主题

3.3 KStream

(1)数据结构类似于map,如下图,key-value键值对

(2)KStream

KStream数据流(data stream),即是一段顺序的,可以无限长,不断更新的数据集。

数据流中比较常记录的是事件,这些事件可以是一次鼠标点击(click),一次交易,或是传感器记录的位置数据。

KStream负责抽象的,就是数据流。与Kafka自身topic中的数据一样,类似日志,每一次操作都是向其中插入(insert)新数据。

为了说明这一点,让我们想象一下以下两个数据记录正在发送到流中:

(“ alice”,1)->(“” alice“,3)

如果您的流处理应用是要总结每个用户的价值,它将返回4alice。为什么?因为第二条数据记录将不被视为先前记录的更新。(insert)新数据

3.4 Kafka Stream入门案例编写

(1)需求分析,求单词个数(word count)

(2)引入依赖

在之前的kafka-demo工程的pom文件中引入

<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-streams</artifactId><exclusions><exclusion><artifactId>connect-json</artifactId><groupId>org.apache.kafka</groupId></exclusion><exclusion><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></exclusion></exclusions>
</dependency>

(3)创建原生的kafka staream入门案例

package com.heima.kafka.sample;
import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;/*** 流式处理*/
public class KafkaStreamQuickStart {public static void main(String[] args) {//kafka的配置信息Properties prop = new Properties();prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"streams-quickstart");//stream 构建器StreamsBuilder streamsBuilder = new StreamsBuilder();//流式计算streamProcessor(streamsBuilder);//创建kafkaStream对象KafkaStreams kafkaStreams = new KafkaStreams(streamsBuilder.build(),prop);//开启流式计算kafkaStreams.start();}/*** 流式计算* 消息的内容:hello kafka  hello itcast* @param streamsBuilder*/private static void streamProcessor(StreamsBuilder streamsBuilder) {//创建kstream对象,同时指定从那个topic中接收消息KStream<String, String> stream = streamsBuilder.stream("itcast-topic-input");/*** 处理消息的value*/stream.flatMapValues(new ValueMapper<String, Iterable<String>>() {@Overridepublic Iterable<String> apply(String value) {return Arrays.asList(value.split(" "));}})//按照value进行聚合处理.groupBy((key,value)->value)//时间窗口 .windowedBy(TimeWindows.of(Duration.ofSeconds(10)))//统计单词的个数.count()//转换为kStream.toStream().map((key,value)->{System.out.println("key:"+key+",vlaue:"+value);return new KeyValue<>(key.key().toString(),value.toString());})//发送消息.to("itcast-topic-out");}
}

(4)测试准备

  • 使用生产者在topic为:itcast_topic_input中发送多条消息
  • 使用消费者接收topic为:itcast_topic_out

结果:

  • 通过流式计算,会把生产者的多条消息汇总成一条发送到消费者中输出

3.5 SpringBoot集成Kafka Stream

(1)自定配置参数

package com.heima.kafka.config;
import java.util.HashMap;
import java.util.Map;/*** 通过重新注册KafkaStreamsConfiguration对象,设置自定配置参数*/@Setter
@Getter
@Configuration
@EnableKafkaStreams
@ConfigurationProperties(prefix="kafka")
public class KafkaStreamConfig {private static final int MAX_MESSAGE_SIZE = 16* 1024 * 1024;private String hosts;private String group;@Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)public KafkaStreamsConfiguration defaultKafkaStreamsConfig() {Map<String, Object> props = new HashMap<>();props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, hosts);//连接信息props.put(StreamsConfig.APPLICATION_ID_CONFIG, this.getGroup()+"_stream_aid");//组props.put(StreamsConfig.CLIENT_ID_CONFIG, this.getGroup()+"_stream_cid");//应用名称props.put(StreamsConfig.RETRIES_CONFIG, 10);//重试次数props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());//key序列化器props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());return new KafkaStreamsConfiguration(props);}
}

修改application.yml文件,在最下方添加自定义配置

kafka:hosts: 192.168.200.130:9092group: ${spring.application.name}

(2)新增配置类,创建KStream对象,进行聚合

package com.heima.kafka.stream;
import java.time.Duration;
import java.util.Arrays;@Configuration
@Slf4j
public class KafkaStreamHelloListener {@Beanpublic KStream<String,String> kStream(StreamsBuilder streamsBuilder){//创建kstream对象,同时指定从那个topic中接收消息KStream<String, String> stream = streamsBuilder.stream("itcast-topic-input");stream.flatMapValues(new ValueMapper<String, Iterable<String>>() {@Overridepublic Iterable<String> apply(String value) {return Arrays.asList(value.split(" "));}})//根据value进行聚合分组.groupBy((key,value)->value)//聚合计算时间间隔.windowedBy(TimeWindows.of(Duration.ofSeconds(10)))//求单词的个数.count().toStream()//处理后的结果转换为string字符串.map((key,value)->{System.out.println("key:"+key+",value:"+value);return new KeyValue<>(key.key().toString(),value.toString());})//发送消息.to("itcast-topic-out");return stream;}
}

测试:

启动微服务,正常发送消息,可以正常接收到消息

3 app端热点文章计算

3.1 思路说明

3.2 功能实现

3.2.1 用户行为(阅读量,评论,点赞,收藏)发送消息,以阅读和点赞为例

①在heima-leadnews-behavior微服务中集成kafka生产者配置

修改nacos,新增内容

spring:application:name: leadnews-behaviorkafka:bootstrap-servers: 192.168.200.130:9092producer:retries: 10key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializer

②修改ApLikesBehaviorServiceImpl新增发送消息

定义消息发送封装类:UpdateArticleMess

package com.heima.model.mess;import lombok.Data;@Data
public class UpdateArticleMess {/*** 修改文章的字段类型*/private UpdateArticleType type;/*** 文章ID*/private Long articleId;/*** 修改数据的增量,可为正负*/private Integer add;public enum UpdateArticleType{COLLECTION,COMMENT,LIKES,VIEWS;}
}

topic常量类:

package com.heima.common.constants;
public class HotArticleConstants {public static final String HOT_ARTICLE_SCORE_TOPIC="hot.article.score.topic";
}

完整代码如下:

package com.heima.behavior.service.impl;import org.springframework.transaction.annotation.Transactional;@Service
@Transactional
@Slf4j
public class ApLikesBehaviorServiceImpl implements ApLikesBehaviorService {@Autowiredprivate CacheService cacheService;@Autowiredprivate KafkaTemplate<String,String> kafkaTemplate;@Overridepublic ResponseResult like(LikesBehaviorDto dto) {//1.检查参数if (dto == null || dto.getArticleId() == null || checkParam(dto)) {return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);}//2.是否登录ApUser user = AppThreadLocalUtil.getUser();if (user == null) {return ResponseResult.errorResult(AppHttpCodeEnum.NEED_LOGIN);}UpdateArticleMess mess = new UpdateArticleMess();mess.setArticleId(dto.getArticleId());mess.setType(UpdateArticleMess.UpdateArticleType.LIKES);//3.点赞  保存数据if (dto.getOperation() == 0) {Object obj = cacheService.hGet(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString());if (obj != null) {return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID, "已点赞");}// 保存当前keylog.info("保存当前key:{} ,{}, {}", dto.getArticleId(), user.getId(), dto);cacheService.hPut(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString(), JSON.toJSONString(dto));mess.setAdd(1);} else {// 删除当前keylog.info("删除当前key:{}, {}", dto.getArticleId(), user.getId());cacheService.hDelete(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString());mess.setAdd(-1);}//发送消息,数据聚合kafkaTemplate.send(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC,JSON.toJSONString(mess));return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);}/*** 检查参数** @return*/private boolean checkParam(LikesBehaviorDto dto) {if (dto.getType() > 2 || dto.getType() < 0 || dto.getOperation() > 1 || dto.getOperation() < 0) {return true;}return false;}
}

③修改阅读行为的类ApReadBehaviorServiceImpl发送消息

完整代码:

package com.heima.behavior.service.impl;
import org.springframework.transaction.annotation.Transactional;@Service
@Transactional
@Slf4j
public class ApReadBehaviorServiceImpl implements ApReadBehaviorService {@Autowiredprivate CacheService cacheService;@Autowiredprivate KafkaTemplate<String,String> kafkaTemplate;@Overridepublic ResponseResult readBehavior(ReadBehaviorDto dto) {//1.检查参数if (dto == null || dto.getArticleId() == null) {return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);}//2.是否登录ApUser user = AppThreadLocalUtil.getUser();if (user == null) {return ResponseResult.errorResult(AppHttpCodeEnum.NEED_LOGIN);}//更新阅读次数String readBehaviorJson = (String) cacheService.hGet(BehaviorConstants.READ_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString());if (StringUtils.isNotBlank(readBehaviorJson)) {ReadBehaviorDto readBehaviorDto = JSON.parseObject(readBehaviorJson, ReadBehaviorDto.class);dto.setCount((short) (readBehaviorDto.getCount() + dto.getCount()));}// 保存当前keylog.info("保存当前key:{} {} {}", dto.getArticleId(), user.getId(), dto);cacheService.hPut(BehaviorConstants.READ_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString(), JSON.toJSONString(dto));//发送消息,数据聚合UpdateArticleMess mess = new UpdateArticleMess();mess.setArticleId(dto.getArticleId());mess.setType(UpdateArticleMess.UpdateArticleType.VIEWS);mess.setAdd(1);kafkaTemplate.send(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC,JSON.toJSONString(mess));return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);}
}

3.2.2 使用kafkaStream实时接收消息,聚合内容

①在leadnews-article微服务中集成kafkaStream (参考kafka-demo)

②定义实体类,用于聚合之后的分值封装

package com.heima.model.article.mess;
import lombok.Data;@Data
public class ArticleVisitStreamMess {/*** 文章id*/private Long articleId;/*** 阅读*/private int view;/*** 收藏*/private int collect;/*** 评论*/private int comment;/*** 点赞*/private int like;
}

修改常量类:增加常量

package com.heima.common.constans;
public class HotArticleConstants {public static final String HOT_ARTICLE_SCORE_TOPIC="hot.article.score.topic";public static final String HOT_ARTICLE_INCR_HANDLE_TOPIC="hot.article.incr.handle.topic";
}

③ 定义stream,接收消息并聚合

package com.heima.article.stream;
import java.time.Duration;@Configuration
@Slf4j
public class HotArticleStreamHandler {@Beanpublic KStream<String,String> kStream(StreamsBuilder streamsBuilder){//接收消息KStream<String,String> stream = streamsBuilder.stream(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC);//聚合流式处理stream.map((key,value)->{UpdateArticleMess mess = JSON.parseObject(value, UpdateArticleMess.class);//重置消息的key:1234343434   和  value: likes:1return new KeyValue<>(mess.getArticleId().toString(),mess.getType().name()+":"+mess.getAdd());})//按照文章id进行聚合.groupBy((key,value)->key)//时间窗口.windowedBy(TimeWindows.of(Duration.ofSeconds(10)))/*** 自行的完成聚合的计算*/.aggregate(new Initializer<String>() {/*** 初始方法,返回值是消息的value* @return*/@Overridepublic String apply() {return "COLLECTION:0,COMMENT:0,LIKES:0,VIEWS:0";}/*** 真正的聚合操作,返回值是消息的value*/}, new Aggregator<String, String, String>() {@Overridepublic String apply(String key, String value, String aggValue) {if(StringUtils.isBlank(value)){return aggValue;}String[] aggAry = aggValue.split(",");int col = 0,com=0,lik=0,vie=0;for (String agg : aggAry) {String[] split = agg.split(":");/*** 获得初始值,也是时间窗口内计算之后的值*/switch (UpdateArticleMess.UpdateArticleType.valueOf(split[0])){case COLLECTION:col = Integer.parseInt(split[1]);break;case COMMENT:com = Integer.parseInt(split[1]);break;case LIKES:lik = Integer.parseInt(split[1]);break;case VIEWS:vie = Integer.parseInt(split[1]);break;}}/*** 累加操作*/String[] valAry = value.split(":");switch (UpdateArticleMess.UpdateArticleType.valueOf(valAry[0])){case COLLECTION:col += Integer.parseInt(valAry[1]);break;case COMMENT:com += Integer.parseInt(valAry[1]);break;case LIKES:lik += Integer.parseInt(valAry[1]);break;case VIEWS:vie += Integer.parseInt(valAry[1]);break;}String formatStr = String.format("COLLECTION:%d,COMMENT:%d,LIKES:%d,VIEWS:%d", col, com, lik, vie);System.out.println("文章的id:"+key);System.out.println("当前时间窗口内的消息处理结果:"+formatStr);return formatStr;}}, Materialized.as("hot-atricle-stream-count-001")).toStream().map((key,value)->{return new KeyValue<>(key.key().toString(),formatObj(key.key().toString(),value));})//发送消息.to(HotArticleConstants.HOT_ARTICLE_INCR_HANDLE_TOPIC);return stream;}/*** 格式化消息的value数据* @param articleId* @param value* @return*/public String formatObj(String articleId,String value){ArticleVisitStreamMess mess = new ArticleVisitStreamMess();mess.setArticleId(Long.valueOf(articleId));//COLLECTION:0,COMMENT:0,LIKES:0,VIEWS:0String[] valAry = value.split(",");for (String val : valAry) {String[] split = val.split(":");switch (UpdateArticleMess.UpdateArticleType.valueOf(split[0])){case COLLECTION:mess.setCollect(Integer.parseInt(split[1]));break;case COMMENT:mess.setComment(Integer.parseInt(split[1]));break;case LIKES:mess.setLike(Integer.parseInt(split[1]));break;case VIEWS:mess.setView(Integer.parseInt(split[1]));break;}}log.info("聚合消息处理之后的结果为:{}",JSON.toJSONString(mess));return JSON.toJSONString(mess);}
}

3.2.3 重新计算文章的分值,更新到数据库和缓存中

①在ApArticleService添加方法,用于更新数据库中的文章分值

/*** 更新文章的分值  同时更新缓存中的热点文章数据* @param mess*/
public void updateScore(ArticleVisitStreamMess mess);

实现类方法

/*** 更新文章的分值  同时更新缓存中的热点文章数据* @param mess*/
@Override
public void updateScore(ArticleVisitStreamMess mess) {//1.更新文章的阅读、点赞、收藏、评论的数量ApArticle apArticle = updateArticle(mess);//2.计算文章的分值Integer score = computeScore(apArticle);score = score * 3;//3.替换当前文章对应频道的热点数据replaceDataToRedis(apArticle, score, ArticleConstants.HOT_ARTICLE_FIRST_PAGE + apArticle.getChannelId());//4.替换推荐对应的热点数据replaceDataToRedis(apArticle, score, ArticleConstants.HOT_ARTICLE_FIRST_PAGE + ArticleConstants.DEFAULT_TAG);
}/*** 替换数据并且存入到redis* @param apArticle* @param score* @param s*/
private void replaceDataToRedis(ApArticle apArticle, Integer score, String s) {String articleListStr = cacheService.get(s);if (StringUtils.isNotBlank(articleListStr)) {List<HotArticleVo> hotArticleVoList = JSON.parseArray(articleListStr, HotArticleVo.class);boolean flag = true;//如果缓存中存在该文章,只更新分值for (HotArticleVo hotArticleVo : hotArticleVoList) {if (hotArticleVo.getId().equals(apArticle.getId())) {hotArticleVo.setScore(score);flag = false;break;}}//如果缓存中不存在,查询缓存中分值最小的一条数据,进行分值的比较,如果当前文章的分值大于缓存中的数据,就替换if (flag) {if (hotArticleVoList.size() >= 30) {hotArticleVoList = hotArticleVoList.stream().sorted(Comparator.comparing(HotArticleVo::getScore).reversed()).collect(Collectors.toList());HotArticleVo lastHot = hotArticleVoList.get(hotArticleVoList.size() - 1);if (lastHot.getScore() < score) {hotArticleVoList.remove(lastHot);HotArticleVo hot = new HotArticleVo();BeanUtils.copyProperties(apArticle, hot);hot.setScore(score);hotArticleVoList.add(hot);}} else {HotArticleVo hot = new HotArticleVo();BeanUtils.copyProperties(apArticle, hot);hot.setScore(score);hotArticleVoList.add(hot);}}//缓存到redishotArticleVoList = hotArticleVoList.stream().sorted(Comparator.comparing(HotArticleVo::getScore).reversed()).collect(Collectors.toList());cacheService.set(s, JSON.toJSONString(hotArticleVoList));}
}/*** 更新文章行为数量* @param mess*/
private ApArticle updateArticle(ArticleVisitStreamMess mess) {ApArticle apArticle = getById(mess.getArticleId());apArticle.setCollection(apArticle.getCollection()==null?0:apArticle.getCollection()+mess.getCollect());apArticle.setComment(apArticle.getComment()==null?0:apArticle.getComment()+mess.getComment());apArticle.setLikes(apArticle.getLikes()==null?0:apArticle.getLikes()+mess.getLike());apArticle.setViews(apArticle.getViews()==null?0:apArticle.getViews()+mess.getView());updateById(apArticle);return apArticle;
}/*** 计算文章的具体分值* @param apArticle* @return*/
private Integer computeScore(ApArticle apArticle) {Integer score = 0;if(apArticle.getLikes() != null){score += apArticle.getLikes() * ArticleConstants.HOT_ARTICLE_LIKE_WEIGHT;}if(apArticle.getViews() != null){score += apArticle.getViews();}if(apArticle.getComment() != null){score += apArticle.getComment() * ArticleConstants.HOT_ARTICLE_COMMENT_WEIGHT;}if(apArticle.getCollection() != null){score += apArticle.getCollection() * ArticleConstants.HOT_ARTICLE_COLLECTION_WEIGHT;}return score;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/78651.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

医学访问学者申请四点规划建议

医学领域一直以来都是人类社会的重要组成部分&#xff0c;而作为一名有志于成为一名医学领域的访问学者&#xff0c;您需要明确自己的目标并做好充分准备。知识人网小编将为您提供四点规划建议&#xff0c;以帮助您成功申请医学访问学者的机会。 第一点&#xff1a;明确研究方向…

OOM分析实战

OOM分析&实战 OOM分析&实战引言&#xff1a;一、JVM内存结构二、JVM OOM错误情况三、实践案例一案例二案例三 四、总结五、分析工具推荐六、参考文献 OOM分析&实战 引言&#xff1a; 在Java开发中&#xff0c;随着应用程序变得越来越复杂&#xff0c;内存管理问题…

Debian11之稳定版本Jenkins安装

系统要求 机器要求 256 MB 内存&#xff0c;建议大于 512 MB 10 GB 的硬盘空间&#xff08;用于 Jenkins 和 Docker 镜像&#xff09;软件要求 Java 8 ( JRE 或者 JDK 都可以) Docker &#xff08;导航到网站顶部的Get Docker链接以访问适合您平台的Docker下载 Maven 用于构…

【循环冗余码检错示例】

接收方怎么看有错没有 余数为0就是无错&#xff01;

低代码框架开发平台厂家:做好产品,实现流程化办公!

在新的发展时代&#xff0c;低代码技术平台拥有诸多优势特点&#xff0c;成为广大企业实现降本、增效办公效率的得力助手。什么样的低代码框架开发平台厂家值得信任与青睐&#xff1f;都有哪些主要产品&#xff1f;为了帮助大家了解这一讯息&#xff0c;一起来了解流辰信息低代…

记录一次使用网云穿实现内网穿透操作

记录一次使用网云穿实现内网穿透操作 摘要 这段时间也很少写博客了,一方面工作表较忙,一方面觉得有些东西在百度上都能找到,甚至比我自己记录的详细,有些笔记也就没打, 这次记录笔记主要是觉得这个 网云穿 很好用,分享给大家. 1 什么是内网穿透? 内网穿透也叫内网映射&#xf…

JetBrains设置inline hint的背景色、前景色

如题。修改IDE的hint前景色和背景色。 修改后结果&#xff1a;

2023/9/14 -- C++/QT

作业&#xff1a; 仿照Vector实现MyVector&#xff0c;最主要实现二倍扩容 #include <iostream>using namespace std;template <typename T> class MyVector { private:T *data;size_t size;size_t V_capacity; public://无参构造MyVector():data(nullptr),size(…

数据可视化大屏模板 | 保姆级使用教程

近来很多朋友私信咨询怎么下载使用数据可视化大屏模板&#xff0c;在这里就给大家做一个相对简单的教程总结。有需要的朋友记得先收藏保存&#xff0c;以便不时之需。 数据可视化大屏制作软件&#xff1a;奥威BI系统 数据可视化报表模板板块&#xff1a;模板秀 主要操作&…

Redis常用应用场景

Redis是一款开源的基于内存的键值存储系统&#xff0c;它提供了多种数据结构和丰富的功能&#xff0c;适用于各种不同的应用场景。以下是Redis常用的应用场景&#xff1a; 1.缓存&#xff1a;Redis最常见的用途就是作为缓存。由于Redis存储在内存中&#xff0c;读取速度非常快…

使用navicat for mongodb连接mongodb

使用navicat for mongodb连接mongodb 安装navicat for mongodb连接mongodb 安装navicat for mongodb 上文mongodb7.0安装全过程详解我们说过&#xff0c;在安装的时候并没有勾选install mongodb compass 我们使用navicat去进行可视化的数据库管理 navicat for mongodb下载地址…

Python —— 捕获异常

1、Python中常见的异常 & 捕获异常 1、常见异常 1、NameError: name a is not defined 2、IndexError: list index out of range 3、KeyError: nam 4、ValueError: invalid literal for int() with base 10: b 5、ZeroDivisionError: div…

Windows10环境下安装VMware虚拟机来安装 CentOs7

软硬件准备 软件&#xff1a;VMware(16 pro)&#xff1a;阿里云盘分享. 硬件&#xff1a;因为是在宿主机上运行虚拟化软件VMware安装centos&#xff0c;所以对宿主机的配置有一定的要求。最起码i5CPU双核、硬盘500G、内存4G以上。 镜像&#xff1a;CentOS7 ,下载地址 http://is…

Python工程师Java之路(p)Module和Package

文章目录 1、Python的Module和Package2、Java的Module和Package2.1、Module2.1.1、分模块开发意义2.1.2、模块的调用 2.2、Package Module通常译作模块&#xff0c;Package通常译作包 1、Python的Module和Package Python模块&#xff08;Module&#xff09;&#xff1a;1个以.…

算法|Day49 动态规划17

LeetCode 647- 回文子串 题目链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 题目描述&#xff1a;给你一个字符串 s &#xff0c;请你统计并返回这个字符串中 回文子串 的数目。 回文字符串 是正着读和倒过来读一样的字符串。 子…

免费音乐下载网站分享(MP3文件格式)

免费音乐下载网站分享&#xff08;MP3文件格式&#xff09; 最近需要下载一些歌曲&#xff0c;发现很多音乐app上下载文件都需要vip&#xff0c;再上网查询了一番&#xff0c;最后发现了一个宝藏网站&#xff0c;可以免费下载各种格式的MP3文件&#xff0c;在这里给大家分享一…

Python+Appium自动化测试-编写自动化脚本

之前已经讲述怎样手动使用appium-desktop启动测试机上的app&#xff0c;但我们实际跑自动化脚本的过程中&#xff0c;是需要用脚本调用appium启动app的&#xff0c;接下来就尝试写Python脚本启动app并登陆app。环境为Windows10 Python3.7 appium1.18.0 Android手机 今日头条…

Android USB电源管理

The USB peripheral detects the lack of 3 consecutive SOF packets as a suspend request from the USB host. 1 驱动shutdown顺序 系统关机或重启的过程中&#xff0c;会调用设备驱动的shutdown函数来完成设备的关闭操作&#xff0c;有需要的设备可以在驱动中定义该函数。其…

pyqt与opencv-qt冲突解决办法

问题&#xff1a;pyqt显示不出界面 问题分析&#xff1a; 根据报错可以看出程序找到了libxcb.so&#xff0c;但是由于某些原因并不能够调用该驱动&#xff0c;这是因为pyqt5与opencv里的qt差生了冲突&#xff0c;这说明opencv内部的插件与pyqt5所使用的插件不兼容&#xff0c;因…

面试问题总结(2)

(꒪ꇴ꒪ )&#xff0c;Hello我是祐言QAQ我的博客主页&#xff1a;C/C语言&#xff0c;数据结构&#xff0c;Linux基础&#xff0c;ARM开发板&#xff0c;网络编程等领域UP&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff0c;让我们成为一个强大的攻城狮&#xff0…