目录
力扣446. 等差数列划分 II - 子序列
解析代码
力扣446. 等差数列划分 II - 子序列
446. 等差数列划分 II - 子序列
难度 困难
给你一个整数数组 nums
,返回 nums
中所有 等差子序列 的数目。
如果一个序列中 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该序列为等差序列。
- 例如,
[1, 3, 5, 7, 9]
、[7, 7, 7, 7]
和[3, -1, -5, -9]
都是等差序列。 - 再例如,
[1, 1, 2, 5, 7]
不是等差序列。
数组中的子序列是从数组中删除一些元素(也可能不删除)得到的一个序列。
- 例如,
[2,5,10]
是[1,2,1,2,4,1,5,10]
的一个子序列。
题目数据保证答案是一个 32-bit 整数。
示例 1:
输入:nums = [2,4,6,8,10] 输出:7 解释:所有的等差子序列为: [2,4,6] [4,6,8] [6,8,10] [2,4,6,8] [4,6,8,10] [2,4,6,8,10] [2,6,10]
示例 2:
输入:nums = [7,7,7,7,7] 输出:16 解释:数组中的任意子序列都是等差子序列。
提示:
1 <= nums.length <= 1000
-2^31 <= nums[i] <= 2^31 - 1
class Solution {
public:int numberOfArithmeticSlices(vector<int>& nums) {}
};
解析代码
和力扣873. 最长的斐波那契子序列的长度、力扣1027. 最长等差数列类似,动态规划解法思路:
状态表示:以某个位置为结尾,结合题目要求,先定义一个状态表示:
dp[i] 表示:以 i 位置元素为结尾的所有子序列中,等差数列的个数。
但是这里有⼀个非常致命的问题,那就是我们无法确定 i 结尾的斐波那契序列的样子。这样就会导致我们无法推导状态转移方程,因此我们定义的状态表示需要能够确定一个等差数列
根据等差数列的特性,我们仅需知道序列里面的最后两个元素,就可以确定这个序列的样子。因此,修改状态表示为:
dp[i][j] 表示:以 i 位置以及 j 位置的元素为结尾的所有的子序列中,等差数列的个数。规定一下 i < j 。
状态转移方程:
设 nums[i] = b, nums[j] = c ,那么这个序列的前一个元素就是 a = 2 * b - c。根据 a 的情况讨论:
- a 存在,下标为 k ,并且 a < b :此时我们需要以 k 位置以及 i 位置元素为结尾的等差数列的长度,然后再加上 j 位置的元素(+1)即可。于是 dp[i][j] =dp[k][i] + 1 ; 因为 a 可能有很多个,我们需要全部累加起来。p[i][j] +=dp[k][i] + 1 ;
- a 存在,但是 b < a < c :dp[i][j] =0 ;
- a 不存在: dp[i][j] = 0 ;
综上,状态转移方程分情况讨论即可。
优化点:我们发现,在状态转移方程中,我们需要确定 a 元素的下标。因此我们可以在 dp 之前,将所有的元素和下标数组绑定在⼀起,放到哈希表中。这里为什么保存下标数组,是因为要统计个数,所有的下标都需要统计。
初始化:可以将表里面的值都初始化为 0 。
填表顺序:先固定斐波那契子序列的最后一个数,然后枚举倒数第二个数。
返回值:返回 dp 表中的所有值的和。
class Solution {
public:int numberOfArithmeticSlices(vector<int>& nums) {int n = nums.size(), ret = 0;vector<vector<int>> dp(n, vector<int>(n, 0));// dp[i][j] 表示:以 i 位置以及 j 位置的元素为结尾的所有的子序列中,等差数列的个数。i < j unordered_map<long long, vector<int>> hash(n);for(int i = 0; i < n; ++i){hash[nums[i]].push_back(i);}for(int j = 2; j < n; ++j) // 固定倒数第一个数{for(int i = 1; i < j; ++i) // 先固定倒数第二个数{long long a = (long long)2 * nums[i] - nums[j]; // 防溢出if(hash.count(a)){for(auto& k : hash[a]){if(k < i)dp[i][j] += dp[k][i] + 1;elsebreak;}}ret += dp[i][j];}}return ret;}
};