Codeforces Round 895 (Div. 3) A ~ F

Dashboard - Codeforces Round 895 (Div. 3) - Codeforces

A

问多少次能使a 和 b相等,就是abs(a - b) / 2除c向上取整,也就是abs(a - b)除2c向上取整。

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;void solve()
{int a, b, c;cin >> a >> b >> c;a = abs(a - b), c *= 2;cout << (a + c - 1) / c << endl;
}int main()
{IOSint _;cin >> _;while(_ --){solve();}return 0;
}

真是一篇好阅读理解,读了好久

就是说陷阱会在踩到后经过s秒触发,触发后不能通过,最少往前走d + s / 2(向上取整)格子后就回不来了,把所有的d + s / 2比较取最小值然后减一就是答案。

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;void solve()
{int n;cin >> n;int ans = 2e9;for(int i = 0; i < n; i ++){int a, b;cin >> a >> b;a = a + (b + 1) / 2;ans = min(ans, a);}cout << ans - 1 << endl;
}int main()
{IOSint _;cin >> _;while(_ --){solve();}return 0;
}

 C

如果是>2的偶数的话,x - 2和x就是一组解

如果l == r且l是奇数的话,可以求l的因子,设因子为d,x - d 和 d 都可以被d整除,这样也可以求出一组解

之后注意一些边界条件就好了。

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;void solve()
{int l, r;cin >> l >> r;if(r < 4){cout << -1 << endl;return;}if(r % 2 && l == r){for(int i = 2; i * i <= l; i ++){if(l % i == 0){cout << l - i << ' ' << i << endl;return;}}cout << -1 << endl;return;}if(r % 2){cout << r - 3 << ' ' << 2 << endl;}else cout << r - 2 << ' ' << 2 << endl;
}int main()
{IOSint _;cin >> _;while(_ --){solve();}return 0;
}

 贪心。

设lcm为x和y的最大公倍数,lcm的倍数的位置有重合,先加后减等于零,在这里操作是没意义的。

加操作有意义的点的数量:n / x - n / lcm

减操作有意义的点的数量:n / y - n / lcm

加的话从n开始加,依次递减n-1、n-2这样

减的话从1开始加,依次递增2、3这样。

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;void solve()
{ll n, x, y;cin >> n >> x >> y;ll gcd = __gcd(x, y);ll lcm = x * y / gcd;ll a = n / x - n / lcm, b = n / y - n / lcm;a = a * (2 * n - a + 1) / 2;b = b * (b + 1) / 2;cout << a - b << endl;
}int main()
{IOSint _;cin >> _;while(_ --){solve();}return 0;
}

E

 前缀和。

 做出这道题需要了解的两个性质:

1. x ^ x = 0;

2. 0 ^ x = x;

根据这两条性质我们就可以求出任意一段连续区间的异或和,使用前缀数组实现,用b[]表示

b[n]表示从第一项异或到第n项

b[r] ^ b[l - 1]就等于 b[l - 1] ^ b[l] ^ ... ^ b[r] ^ b[l - 1] = b[l] ^ ... ^ b[r];

 对于第一个操作,区间修改,如果一个数x的对应位置上的树为1,被修改后变成0,就相当于x没被启用,变成0了,就相当于异或x本身,

如果一个数x的对应位置上的树为0,被修改后变成1,就相当于x被启用了,变成了1,也相当于异或x本身。

先用一个ans计算出被启用的数的异或和,之后每进行一次区间修改就相当于异或一遍这个区间内的异或和,非常的easy。

然后第二个操作,如果是查1,直接输出ans就好了

如果是查2,输出前n项异或前缀和异或ans就好了

听说有人线段树过了,挺nb的,之后再学一学。

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 100010;int a[N], b[N];void solve()
{int n;cin >> n;for(int i = 1; i <= n; i ++){cin >> a[i];b[i] = b[i - 1] ^ a[i]; }string s;cin >> s;s = ' ' + s;int ans = 0;for(int i = 1; i <= n; i ++){if(s[i] == '1'){ans ^= a[i];}}int Q;cin >> Q;while(Q --){int op;cin >> op;if(op == 1){int l, r;cin >> l >> r;int res = b[r] ^ b[l - 1];ans ^= res;}else{int x;cin >> x;if(x == 1)cout << ans << ' ';else cout << (b[n] ^ ans) << ' ';}}cout << endl;
}int main()
{IOSint _;cin >> _;while(_ --){solve();}return 0;
}

赛后学的线段树做法:

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 100010;int n;
int a[N];
string s;
struct Node
{int l, r;int sum0, sum1;int f;
}tr[N * 4];void pushup(int u)
{tr[u].sum0 = tr[u << 1].sum0 ^ tr[u << 1 | 1].sum0;tr[u].sum1 = tr[u << 1].sum1 ^ tr[u << 1 | 1].sum1;
}void pushdown(int u)
{Node &root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];if(tr[u].f){swap(left.sum0, left.sum1);swap(right.sum0, right.sum1);left.f ^= tr[u].f;right.f ^= tr[u].f;tr[u].f = 0;}
}void build(int u, int l, int r)
{if(l == r){if(s[l] == '0')tr[u] = {l, r, a[l], 0, 0};else tr[u] = {l, r, 0, a[l], 0};}else{tr[u] = {l, r, 0, 0, 0};int mid = l + r >> 1;build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);pushup(u);}
}void modify(int u, int l, int r)
{if(tr[u].l >= l && tr[u].r <= r){swap(tr[u].sum0, tr[u].sum1);tr[u].f ^= 1;}else{pushdown(u);int mid = tr[u].l + tr[u].r >> 1;if(l <= mid)modify(u << 1, l, r);if(r > mid)modify(u << 1 | 1, l, r);pushup(u);}
}void solve()
{cin >> n;for(int i = 1; i <= n; i ++)cin >> a[i];cin >> s;s = ' ' + s;build(1, 1, n);int Q;cin >> Q;while(Q --){int op;cin >> op;if(op == 1){int l, r;cin >> l >> r;modify(1, l, r);}else{int x;cin >> x;if(x == 0)cout << tr[1].sum0 << ' ';else cout << tr[1].sum1 << ' ';}}cout << endl;
}int main()
{IOSint _;cin >> _;while(_ --){solve();}return 0;
}

Node节点存两个值sum0和sum1,f作为懒标记。

F

i在要a[i]之前被卖出,其实就是拓扑排序,先输出没在环中的点,然后每个环中,值最小的那个点最后卖出一定是最优的,类似贪心。

其实我在想如果一个点同时出现在两个环中该怎么办,然后发现这种情况其实不存在

比如

如果一个点出现在多个环中,边数会比点数还多,因为又要求每个点的出度都为1,所以这种情况显然是与输入要求矛盾的,所以一个点一定最多出现在一个环内,证毕。

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 100010;int n;
int h[N], e[N], ne[N], idx;
int d[N];
int a[N], b[N];
bool st[N];
vector<int> ans;
queue<int> q;void add(int a, int b)
{e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}void bfs()
{while(q.size()){int t = q.front();q.pop();ans.push_back(t);for(int i = h[t]; i != -1; i = ne[i]){int j = e[i];if(st[j])continue;d[j] --;if(!d[j]){q.push(j);st[j] = true;}}}
}void solve()
{idx = 0;ans.clear();cin >> n;priority_queue<PII, vector<PII>, greater<PII>> heap;for(int i = 1; i <= n; i ++)d[i] = 0;for(int i = 1; i <= n; i ++){st[i] = false;h[i] = -1;cin >> a[i];add(i, a[i]);d[a[i]] ++;}for(int i = 1; i <= n; i ++){cin >> b[i];heap.push({b[i], i});if(!d[i]){st[i] = true;q.push(i);}}bfs();while(ans.size() < n){int ver;while(heap.size()){PII t = heap.top();heap.pop();if(!st[t.second]){ver = t.second;break;}}st[ver] = true;for(int i = h[ver]; i != -1; i = ne[i]){int j = e[i];if(st[j])continue;d[j] --;if(!d[j]){q.push(j);st[j] = true;}}bfs();ans.push_back(ver);}for(int i = 0; i < n; i ++)cout << ans[i] << ' ';cout << endl;}int main()
{IOSint _;cin >> _;while(_ --){solve();}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/78518.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习网络编程No.6【将服务器日志和守护进程化】

引言&#xff1a; 北京时间&#xff1a;2023/9/1/21:15&#xff0c;下午刚更新完博客&#xff0c;同理再接再厉&#xff0c;这样整天不需要干什么&#xff0c;除了玩手机的日子不多了&#xff0c;马上就要开学&#xff0c;每天需要签到签退的日子就要来临&#xff0c;烦躁&…

浅谈STL|STL函数对象篇

一.函数对象概念 概念: 重载函数调用操作符的类&#xff0c;其对象常称为函数对象 函数对象使用重载的()时&#xff0c;行为类似函数调用&#xff0c;也叫仿函数 本质: 函数对象(仿函数)是一个类&#xff0c;不是一个函数 特点 函数对象在使用时&#xff0c;可以像普通函数那…

Linux提权

shell分本地shell 和 webshell 有些提权方式只能本地shell使用 常见内核漏洞查找脚本以及利用 环境变量提权 suid https://www.cnblogs.com/banglook/archive/2022/03/17/16019354.html linux特殊命令https://www.secrss.com/articles/28493 什么是suid SUID (Set UID)是Li…

「中秋来袭」没想到,用OpenCV竟能画出这么漂亮的月饼「附源码」

一、前言 中秋佳节即将来临&#xff0c;作为传统的中国节日之一&#xff0c;人们除了品尝美味的月饼、赏月外&#xff0c;还喜欢通过绘画来表达对这个节日的喜悦和祝福。而如今&#xff0c;随着科技的不断发展&#xff0c;竟然可以借助计算机视觉库OpenCV来绘制精美的月饼和可…

Redis的数据持久化方案

目录 前言 RDB方式 概述&#xff1a; 1.RDB手动 &#xff12;.RDB自动 RDB优缺点 AOF方式 概述 AOF写数据的三种策略 AOF相关配置 AOF重写 AOF重写方式 手动重写 bgrewriteaof 自动重写 总结 前言 Redis是一个内存型数据库&#xff0c;也就是说如果不将内存中的…

被删除并且被回收站清空的文件如何找回

文件的意外删除和回收站清空是许多用户面临的普遍问题。这种情况下&#xff0c;很多人会感到无助和焦虑&#xff0c;担心自己的重要文件永远丢失。然而&#xff0c;幸运的是&#xff0c;依然存在一些有效的方法能够帮助我们找回被删除并且被回收站清空的文件。 ▌被删除文件在…

uniapp——实现聊天室功能——技能提升

这里写目录标题 效果图聊天室功能代码——html部分代码——js部分代码——其他部分 首先声明一点&#xff1a;下面的内容是从一个uniapp的程序中摘录的&#xff0c;并非本人所写&#xff0c;先做记录&#xff0c;以免后续遇到相似需求抓耳挠腮。 效果图 聊天室功能 发送图片 …

进制转换问题

进制 二进制 &#xff08;Binary&#xff09;&#xff1a;0、1。简写为B 八进制&#xff08;Octonary&#xff09;&#xff1a;0、1、2、3、4、5、6、7。简写为O 十进制&#xff08;decimalism&#xff09;&#xff1a;0、1、2、3、4、5、6、7、8、9 简写为D 十六进制&#xff…

【建议收藏】职场人口头和书面沟通必备词语,瞬间高大上

这年头&#xff0c;在职场不但要会做&#xff0c;还要会说。 会说还不能平铺直叙的说&#xff0c;还要能把普通的工作说出话来&#xff0c;这就需要一些“考究”的用词。尤其是在某些头部企业的带领下&#xff0c;业务不够、产品不行、解决方案不够新&#xff0c;就用华丽的辞…

ASEMI二极管1N4148(T4)的用途和使用建议

编辑-Z 二极管是一种常见的电子元件&#xff0c;其中1N4148&#xff08;T4&#xff09;是一款广泛使用的快恢复二极管。它具有快速的开关特性和高反向阻挡能力&#xff0c;适用于多种电子应用。本文将介绍1N4148&#xff08;T4&#xff09;的特点、用途和如何正确使用该二极管…

如何使用极狐GitLab 支持 ISO 27001 合规

目录 组织控制 技术控制 了解更多 本文来源&#xff1a;about.gitlab.com 作者&#xff1a;Joseph Longo 译者&#xff1a;武让 极狐GitLab 高级解决方案架构师 作为一体化平台&#xff0c;通过极狐GitLab 可以很容易实现 DevSecOps 全生命周期管理。极狐GitLab 使开发人员能…

无涯教程-JavaScript - FALSE函数

描述 FALSE函数返回逻辑值FALSE。 语法 FALSE () 争论 FALSE函数没有参数。 Notes 您还可以在工作表或公式中直接键入FALSE单词,Microsoft Excel会将其解释为逻辑值FALSE。 提供FALSE功能主要是为了与其他电子表格程序兼容。 适用性 Excel 2007,Excel 2010,Excel 2013…

webhook--详解(gitee 推送)

一、简介 webhook 是一种基于 HTTP 的回调函数&#xff0c;可在 2 个应用编程接口&#xff08;API&#xff09;之间实现轻量级的事件驱动通信。是一种新型的前后端交互方式&#xff0c;一种对客户端-服务器模式的逆转&#xff0c;在传统方法中&#xff0c;客户端从服务器请求数…

怎样做一个简易而温馨的原木风居室空间

由 balbek bureau 设计的 Relogged 是一座重新设计的私人住宅&#xff0c;位于乌克兰河岸的绿化区。顾名思义&#xff0c;该项目重新诠释了木屋的概念&#xff0c;并与充满自然气息的环境相呼应&#xff0c;营造出宁静舒适的生活氛围。在探索重新设计的木屋实例时&#xff0c;建…

设计模式:享元模式

设计模式&#xff1a;享元模式 什么是享元模式 首先我们需要简单了解一下什么是享元模式。享元模式(Flyweight Pattern):主要用于减少创建对象的数量&#xff0c;以减少内存占用和提高性能。享元模式的重点就在这个享字&#xff0c;通过一些共享技术来减少对象的创建&#xff…

《Web安全基础》04. 文件操作安全

web 1&#xff1a;文件操作安全2&#xff1a;文件上传漏洞2.1&#xff1a;简介2.2&#xff1a;防护与绕过2.3&#xff1a;WAF 绕过2.3.1&#xff1a;数据溢出2.3.2&#xff1a;符号变异2.3.3&#xff1a;数据截断2.3.4&#xff1a;重复数据 3&#xff1a;文件包含漏洞4&#xf…

7、Spring之依赖注入源码解析(下)

resolveDependency()实现 该方法表示,传入一个依赖描述(DependencyDescriptor),该方法会根据该依赖描述从BeanFactory中找出对应的唯一的一个Bean对象。 @Nullable Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,@Null…

一个最简verilog代码的分析

module testmod( input CLK, output reg [1:0]acc);always(posedge CLK)acc<acc2d1; endmodule 上述代码综合后的电路图为&#xff1a; 分析1 假设在t1时刻&#xff0c;两个触发器的状态都是1&#xff0c;即acc2b11&#xff0c;此时半加器1的A端是1&#xff0c;则D触发器1…

Postman接口压力测试 ---- Tests使用(断言)

所谓断言&#xff0c;主要用于测试返回的数据结果进行匹配判断&#xff0c;匹配成功返回PASS&#xff0c;失败返回FAIL。 下图方法一&#xff0c;直接点击右侧例子函数&#xff0c;会自动生成出现在左侧窗口脚本&#xff0c;只需修改数据即可。 方法二&#xff1a;直接自己写脚…

使用内网端口映射方案,轻松实现U8用友ERP的本地部署异地远程访问——“cpolar内网穿透”

文章目录 前言1. 服务器本机安装U8并调试设置2. 用友U8借助cpolar实现企业远程办公2.1 在被控端电脑上&#xff0c;点击开始菜单栏&#xff0c;打开设置——系统2.2 找到远程桌面2.3 启用远程桌面 3. 安装cpolar内网穿透3.1 注册cpolar账号3.2 下载cpolar客户端 4. 获取远程桌面…