2014年认证杯SPSSPRO杯数学建模A题(第二阶段)轮胎的花纹全过程文档及程序

2014年认证杯SPSSPRO杯数学建模

A题 轮胎的花纹

原题再现:

  轮胎被广泛使用在多种陆地交通工具上。根据性能的需要,轮胎表面常会加工出不同形状的花纹。在设计轮胎时,往往要针对其使用环境,设计出相应的花纹形状。
  第二阶段问题: 轮胎花纹的形状对轮胎的性能有着可观的影响。推出一款新的轮胎时,往往也要对花纹形状进行认真的设计和优化。请你建立合理的数学模型,当给定车辆情况、路面条件和使用需求时,设计出合适的轮胎花纹。

整体求解过程概述(摘要)

  本文针对轮胎花纹的设计建立了一个多目标规划的模型。通过轮胎花纹对于轮胎性能的影响,我们将所影响轮胎的性能转化为六项可见的指标(承载性能、防滑性能、牵引性能、减噪性能、耐磨性能),并以这六项指标来建立多目标规划的模型,并用 TOPSIS分析法来得到最终的最优解。对于如何设计出轮胎花纹,我们可将其分解为以下几个部分来求解影响花纹设计的几个参数,最终得到轮胎花纹的设计方案。
  第一部分:我们将驾车者对于轮胎使用需求分为三类:车辆情况、路面条件、行车条件。将这三类需求的每种情况所对应的轮胎性能的要求进行量化,并用矩阵表示。同时,通过权值分析,将给定车辆情况、路面条件、行车条件后对轮胎性能的要求表示出来,并用储存在目标向量。
  第二部分:结合文献资料,我们总结出 3 个轮胎花纹设计要素(轮胎花纹走向、沟槽比、沟槽深度),并且将花纹的设计因素对轮胎性能的影响进行评价,最终进行量化。通过引入参数θ (横纹倾斜度), x (横纹所占总花纹面积比),b (沟槽比),c(沟槽深度),然后由目标向量来建立一个非线性规划模型,再对其进行优化,将非线性规划
转化为图中寻求最优路径的问题。
  第三部分:在第二部分中寻找到了所有可行路径后,为了寻求在多个目标均最优的条件下最优解,通过 TOPSIS 分析法,对所有可行路径进行从优到劣的排列,得到所需求的最优路径,从而也确定了花纹的设计方案。

问题分析:

  在解决上述三个问题之前,我们首先确定对轮胎的性能评价分类:承载性能、防滑性能、牵引性能、减噪性能、缓冲性能。耐磨性能,这六项性能基本包括了轮胎能力涵盖的范围。
  针对问题 1,不同消费者会给出不同的车辆情况、路面条件、使用需求。以路面条件为例,就可以划分为沙地、碎石地、山地、雨雪地、沼泽地、高速公路、沥青路面、水泥路面,这样的分类方式过于繁杂,处理数据过程中很容易出现纰漏。如果仅依靠几个特殊的条件得到的花纹组合那么将不具有解决问题的通用性、很难体现数学建模的实际意义。我们要做的便是通过资料的收集,将消费者对于车辆情况、路面条件、使用需求的约束条件进行归纳分析,将其分为三大类,每个大类选取典型的影响因子,将这些典型的影响因子量化,这样做即达到了简化数学模型的目的,又不会丢失过多的影响因素,影响文章的准确性。
  针对问题 2,通过对第一阶段问题的研究,我们得到了轮胎花纹的性能特征、影响因素,但这些结论大部分是定性结论,如果想实现给定条件下设计出合适的花纹,必须将花纹设计因素量化成性能评分,通过分数评定得到给定条件下的花纹组合。通过查询一系列资料,我们将花纹的设计因素归纳为轮胎花纹走向、沟槽比、沟槽深度。将这三个设计因素与轮胎的六项性能建立分值联系,达到量化的效果。其中在花纹走向的分析上,我们将横纵向花纹根据其在整体花纹组合中的贡献度进行复合,得到一个比较完善的花纹走向评分模型;沟槽比、沟槽深度则通过资料介绍、测量得到合理的区间范围,引入量化模型。
  针对问题 3,通过前两个问题已经分别得到了花纹性能评价的量化评分指标,实际需求条件对于性能的量化评分指标,通过某一给定的实际需求指标,计算出能够满足该需求的轮胎花纹所有组合,最后通过多目标规划等数学建模方法,减小可行域,得到相应的可行解,再通过对于实际问题的分析得到轮胎花纹设计的最优化解决方案,完成轮胎花纹设计方案。

模型假设:

  1.假设轮胎使用的材质相同;
  2.假设轮胎的半径以及胎壁厚度相同;
  3.假设轮胎花纹性质仅由花纹走向,沟槽比,沟深决定。

论文缩略图:

在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

function [routes,combinc,all]=essential(theta,x,a,b,c,target)
%Tranverse all the combinations of elements in a, b, c, caclulate weight of routes connected
to a, b, c.
combin=[];routes=[];routes1=[];combinc=[];
all=[];
for i=1:5
for j=1:6
extent(i,j)=a(1,j)*cos(theta(i))+a(2,j)*sin(theta(i));
end
end
for i=1:6
extent(6,i)=a(2,i);
end
for k=1:5for i=1:5
for j=1:6
combin1(i,j)=x(k)*extent(i,j)+(1-x(k))*extent(6,j);
end
end
combin=[combin;combin1];
end
for i=1:25
for j=1:4
combinb(j,:)=combin(i,:)+b(j,:);
for k=1:4
combinc1(k,:)=combinb(j,:)+c(k,:);
flag=0;
for m=1:6
if combinc1(k,m)-target(m)<0
flag=1;
continue;
end
end
if flag==0;
routes1=[i,j,k];
routes=[routes;routes1];
combinc=[combinc;combinc1(k,:)];
end
end
all=[all;combinc1];
end
end
(2)Topsis 法:将原始的组合信息 combinc 转换成规范矩阵
function norm_matrix=create_norm(combinc)
% combinc - Oringinal Data
[m,n]=size(combinc);
for j=1:n
norm_matrix(:,j)=combinc(:,j)/norm(combinc(:,j));
end
(3)将整合路径分布成原始的组合路径,即花纹设计方案的组合
function rou=translaterou(routes,theta,x,bb,cc)
[m,n]=size(routes);
rou=[];rou_rest=[];
for i=1:m
if routes(i,1)<5
o=routes(i,1);
else
o=fix(routes(i,1)/5);
end
p=mod(routes(i,1),5);
if p==0
p=5;
end
rou1=[theta(o),x(p)];
rou=[rou;rou1];
end
for i=1:m
rou2=[bb(routes(i,2)),cc(routes(i,3))];
rou_rest=[rou_rest;rou2];
end
rou=[rou,rou_rest];
(4)Topsis 法:取最优可行解
function [sf,index]=topsis(weightednorm)
[m,n]=size(weightednorm);
c_positive=max(weightednorm);
c_negetive=min(weightednorm);
for i=1:m
s_positive(i)=norm(weightednorm(i,:)-c_positive);
s_negetive(i)=norm(weightednorm(i,:)-c_negetive);
end
figure=s_negetive./(s_negetive+s_positive);
[sf,index]=sort(figure,'descend');
(5)根据车辆类型、道路状况、使用需求组合加权得出指标矩阵
function [all_target,target]=allt(car,conditions,needs)
car=0.4*car;
conditions=0.2*conditions;
needs=0.4*needs;
part=[];all_target=[];index0=[];index=[];
for i=1:5
for j=1:4
part1(j,:)=car(i,:)+conditions(j,:);
index1(j,:)=[i,j];
end
part=[part;part1];
index0=[index0;index1];
end
for i=1:20
for j=1:4
part2(j,:)=part(i,:)+needs(j,:);
index2(j,:)=[index0(i,:),j];
end
all_target=[all_target;part2];
index=[index;index2];
end
target=3*all_target;
all_target=[target,index];
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/785053.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SAP 销售分销中的免费货物

销售业务中&#xff0c;免费货物在您与客户协商价格时起着重要作用。在零售、化工或消费品这样的行业部门中&#xff0c;通常以免费货物的形式向客户提供折扣。 作为用户&#xff0c;业务用户希望能自动确定免费货物并将它们归入销售凭证中。同时需要向成本控制部门提供免费货物…

SOC内部集成网络MAC外设+ PHY网络芯片方案:PHY芯片基础知识

一. 简介 本文简单了解一下 "SOC内部集成网络MAC外设 PHY网络芯片方案" 这个网络硬件方案中涉及的 PHY网络芯片的基础知识。 二. PHY芯片基础知识 PHY 是 IEEE 802.3 规定的一个标准模块。 1. IEEE规定了PHY芯片的前 16个寄存器功能是一样的 前面说了&#xf…

[优选算法专栏]专题十五:FloodFill算法(二)

本专栏内容为&#xff1a;算法学习专栏&#xff0c;分为优选算法专栏&#xff0c;贪心算法专栏&#xff0c;动态规划专栏以及递归&#xff0c;搜索与回溯算法专栏四部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握算法。 &#x1f493;博主csdn个人主页&#xff1a;小…

基于8086多路模拟采集LED报警系统设计

**单片机设计介绍&#xff0c;基于8086多路模拟采集LED报警系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于8086多路模拟采集LED报警系统设计概要 一、引言 在工业控制、环境监测以及智能家居等领域&#xff0c;多…

探索http-vue-loader的奥秘:原理、使用方法、在Vue开发中的应用

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

软考历史题目

2023.3 1. 磁盘索引块1KB,每个地址项4字节&#xff0c;每个磁盘索引块可以存放256个物理块地址 2.5个地址项为直接索引地址&#xff0c;所以0-5逻辑块是直接索引 3.一级间接地址索引&#xff0c;每个指向的物理块存255个地址 4.二级间接地址&#xff1a;256个间接索引表地址…

碧桂园服务:以进促稳,年收入增长至人民币约426.1亿元

碧桂园服务控股有限公司今日发布截至2023年12月31日十二个月报告期内之经审核综合业绩。2023年&#xff0c;碧桂园服务收入持续增长至人民币约426.1亿元。同时&#xff0c;业务发展保持稳健且市场化程度高&#xff0c;来自于第三方的收入占比进一步提升达到新高至约96.9%。 业绩…

提高编程效率的VScode插件

1.Prettier Prettier 是一种广泛使用的采用代码格式化程序&#xff0c;在您的项目中强制执行一致的代码风格。它支持各种编程语言 并根据预定义的规则自动格式化您的代码&#xff0c;从而增强可读性并减少与样式相关的冲突。 2.远程 SSH Visual Studio Code 的 远程 – SSH…

DSSS-UQPSK学习笔记

文章目录 非平衡四相键控-直接序列扩频&#xff08;UQPSK-DSSS&#xff09;信号因其能同时传输两路不同功率、不同速率信号的特点&#xff0c;在需要图象和数据综合业务传输的领域得到了广泛应用。 系统信号的调制方式为非平衡四相键控&#xff08;Unbalanced Quadrature Phase…

注册接口和前置SQL及数据生成及封装

注册接口 演示注册接口的三步操作&#xff1a;【注册流程逻辑】 第一步&#xff1a;发送注册短信验证码接口请求 请求方法&#xff1a; put 请求地址&#xff1a;http://shop.lemonban.com:8107/user/sendRegisterSms 请求参数&#xff1a;{“mobile”:“13422337766”} 请求头…

​打破牙医恐惧 从牙一齿科开始——记杭州资深口腔专家武建潮博士与他的牙科品牌

生机勃勃的绿植花卉&#xff0c;温馨亲切的原木装修&#xff0c;卡通乐园般的儿童诊室&#xff0c;一应俱全的先进设备……走进位于浙江省杭州市余杭区荆长路590-1-A的牙一齿科&#xff0c;温暖的气息扑面而来&#xff0c;细致热情的服务更让人如沐春风&#xff0c;任谁都很难想…

1.8 python 模块 time、random、string、hashlib、os、re、json

ython之模块 一、模块的介绍 &#xff08;1&#xff09;python模块&#xff0c;是一个python文件&#xff0c;以一个.py文件&#xff0c;包含了python对象定义和pyhton语句 &#xff08;2&#xff09;python对象定义和python语句 &#xff08;3&#xff09;模块让你能够有逻辑地…

Redis 全景图(2)---- 关于 Redis 的三“高”

前言 我们继续写第一篇文章没写完的。其实我也不想将我写的一篇 Redis 文章分成几篇中短文来写&#xff0c;但是没办法&#xff0c;我一次写个1万字&#xff0c;会限流&#xff0c;所以将就一下吧。 上篇文章我用了 Redis 的6大模块这个思路来描绘我脑子中的 Redis。其实这6大…

密码算法概论

基本概念 什么是密码学&#xff1f; 简单来说&#xff0c;密码学就是研究编制密码和破译密码的技术科学 例题&#xff1a; 密码学的三个阶段 古代到1949年&#xff1a;具有艺术性的科学1949到1975年&#xff1a;IBM制定了加密标准DES1976至今&#xff1a;1976年开创了公钥密…

Golang | Leetcode Golang题解之第4题寻找两个正序数组的中位数

题目&#xff1a; 题解&#xff1a; func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {if len(nums1) > len(nums2) {return findMedianSortedArrays(nums2, nums1)}m, n : len(nums1), len(nums2)left, right : 0, mmedian1, median2 : 0, 0for left <…

app自动化-Appium学习笔记

使用Appium&#xff0c;优点&#xff1a; 1、支持语言比较多&#xff0c;例如&#xff1a;Java、Python、Javascript、PHP、C#等语言 2、支持跨应用&#xff08;windows、mac、linux&#xff09; 3、适用平台Android、iOS 4、支持Native App(原生app)、Web App、Hybird App…

算法系列--递归,回溯,剪枝的综合应用(1)

&#x1f495;"对相爱的人来说&#xff0c;对方的心意&#xff0c;才是最好的房子。"&#x1f495; 作者&#xff1a;Lvzi 文章主要内容&#xff1a;算法系列–递归,回溯,剪枝的综合应用(1) 大家好,今天为大家带来的是算法系列--递归,回溯,剪枝的综合应用(1) 1.全排…

使用Redis集合List实现消息队列

系列文章目录 文章目录 系列文章目录前言前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 Redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型…

高阶DS---AVL树详解(每步配图)

目录 前言&#xff1a; AVL树的概念: AVL树节点的定义&#xff1a; AVL树的插入&#xff08;重点&#xff09; AVL树的旋转&#xff1a; &#xff08;1&#xff09;新节点插入较高左子树的左侧---右单旋 &#xff08;2&#xff09;新节点插入较高右子树的右侧---左单旋 …

unity双层滑动实现

实现功能&#xff1a; 当滑动列表中内容处于顶端的时候&#xff0c;向上滑动优先滑动整个滑动列表&#xff0c;当滑动列表移动到设置位置&#xff0c;即设定的最高处时&#xff0c;继续移动列表内内容。向下移动亦然&#xff0c;当内容处于滑动列表顶端时&#xff0c;移动整个滑…