【计算机视觉】四篇基于Gaussian Splatting的SLAM论文对比

本文对比四篇论文:

[1] Gaussian Splatting SLAM
[2] SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM
[3] Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting
[4] GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting

文章目录

  • 一、文章概括
    • [1] Gaussian Splatting SLAM
      • 1. 相机追踪(Tracking)
      • 2. 关键帧选取(Keyframing)
      • 3. Gaussian的新增和删除
      • 4. 三维重建
    • [2] SplaTAM
      • 1. 初始化(Initialization)
      • 2. 相机追踪(Tracking)
      • 3. 高斯致密化(Gaussian Densification)
      • 4. 高斯场景更新(Gaussian Map Updating)
    • [3] Gaussian-SLAM
      • 1. 子场景(Sub-map)
      • 2. 形状和颜色编码(Geometry and Color Encoding)
      • 3. 相机追踪(Tracking)
    • [4] GS-SLAM
      • 1. 自适应3D高斯扩张重建(Adaptive 3D Gaussian Expanding Mapping)
      • 2. 相机追踪(Tracking)
      • 3. 关键帧选取
      • 4. Bundle Adjustment
  • 二、方法的异同
      • 共同点
      • 不同点

一、文章概括

[1] Gaussian Splatting SLAM

这篇论文主要解决的是一个RGB-D单目相机的三维重建问题。

1. 相机追踪(Tracking)

在估计相机外参时,该方法最小化以下目标函数:
其中 λ p h o \lambda_{pho} λpho是权重超参数,
I ( G , T C W ) I(\mathcal{G},\boldsymbol{T}_{CW}) I(G,TCW)表示从外参为 T C W \boldsymbol{T}_{CW} TCW的相机渲染高斯集合 G \mathcal{G} G所得的图片, I ˉ \bar{I} Iˉ是真实图片; E p h o E_{pho} Epho为图片误差。
E g e o E_{geo} Egeo为深度误差,仅在深度信息可用时引入, D ( G , T C W ) D(\mathcal{G},\boldsymbol{T}_{CW}) D(G,TCW)是渲染出来的深度(渲染方式和RGB值类似), D ˉ \bar{D} Dˉ是深度数据。

2. 关键帧选取(Keyframing)

该方法选取关键帧窗口 W k \mathcal{W}_k Wk,选取依据是两帧之间共同可见Gaussians的比例(判断Gaussian是否可见的方法就是判断到该Gaussian的透光率是否达到0.5)。定义共同可见度(covisibility)为当前帧 i i i与上一个关键帧 j j j之间可见Gaussians集合的IoU。若共同可见度低于某个阈值,或相对平移 t i j t_{ij} tij相对于深度中位数较大,则帧 i i i被视为关键帧。

同时,当当前帧 i i i被加入关键帧窗口时,也要移除 W k \mathcal{W}_k Wk中已经陈旧的关键帧。当帧 j ∈ W k j\in\mathcal{W}_k jWk与帧 i i i可见Gaussians的重叠系数(OC, Overlapping Coefficient)小于某个阈值时,就将其移除。OC的定义如下:

3. Gaussian的新增和删除

每个关键帧都会添加新Gaussians。该方法用关键帧中每个像素点的深度 D D D(在单目相机的情形该方法会渲染深度)作为新增Gaussians的参考位置。由于 D D D不一定准确,新Gaussians的深度服从一个均值为 D D D、方差较小的正态分布;对于没有深度估计的像素,新Gaussians的深度服从均值为渲染图像深度中位数、方差较大的正态分布。在一开始还没有Gaussian时,新增Gaussian的位置是随机的。

当关键帧窗口 W k \mathcal{W}_k Wk已满,该方法执行删除操作。如果最近三个关键帧内新增的Gaussians没有在其他至少三帧内观察到,那就将它们移除。不透明度小于 0.7 0.7 0.7的Gaussians也会被移除。

4. 三维重建

这部分的目的是维持一个协调的3D结构并优化新插入的Gaussians。参与优化的帧为 W = W k ∪ W r \mathcal{W}=\mathcal{W}_k\cup \mathcal{W}_r W=WkWr,其中 W r \mathcal{W}_r Wr是随机选取的两个以往的帧。3D Gaussians的渲染过程没有对沿光线方向的Gaussian进行约束,这可能会导致SLAM过程中出现。因此,该方法惩罚了“拉得太长”的Gaussians,方法是引入各向同性约束(isotropic regularization):
其中 s i \mathbf{s}_i si是第 i i i个Gaussian的缩放参数, s ~ i \tilde{\mathbf{s}}_i s~i是其在各个方向的均值。

对于三维重建部分,该方法求解以下最优化问题: min ⁡ T C W k ∈ S E ( 3 ) ∀ x ∈ W , G ∑ ∀ k ∈ W E p h o k + λ i s o E i s o \min\limits_{\underset{\forall x\in\mathcal{W}}{\boldsymbol{T}_{CW}^k\in\mathbf{SE}(3)},\mathcal{G}} \sum\limits_{\forall k\in\mathcal{W}}E_{pho}^k+\lambda_{iso}E_{iso} xWTCWkSE(3),GminkWEphok+λisoEiso其中上标中的 k k k代表第 k k k帧, λ i s o \lambda_{iso} λiso E i s o E_{iso} Eiso的系数(是一个超参数)。

[2] SplaTAM

这篇论文处理的对象也是“single unposed RGB-D camera”,即深度单目相机。

该方法引入了“silhouette image”(一种灰度图?)的概念,其计算公式如下:

其中 f i ( p ) f_i(\mathbf{p}) fi(p)代表Gaussian i i i对应于像素 p \mathbf p p的不透明度。令 α i = f i ( p ) \alpha_i=f_i(\mathbf{p}) αi=fi(p)。注意到 1 − S ( p ) = 1 − ∑ i = 1 n α i ∏ j = 1 i − 1 [ 1 − α j ] = 1 − α 1 − ( 1 − α 1 ) α 2 − ( 1 − α 1 ) ( 1 − α 2 ) α 3 − ( 1 − α 1 ) ( 1 − α 2 ) ⋯ ( 1 − α n − 1 ) α n = ( 1 − α 1 ) [ 1 − α 2 − ( 1 − α 2 ) α 3 − ⋯ − ( 1 − α 2 ) ⋯ ( 1 − α n − 1 ) α n ] = ( 1 − α 1 ) ( 1 − α 2 ) [ 1 − α 3 − ⋯ − ( 1 − α 3 ) ⋯ ( 1 − α n − 1 ) α n ] = ⋯ = ( 1 − α 1 ) ( 1 − α 2 ) ⋯ ( 1 − α n ) \begin{aligned} 1-S(\mathbf{p})&=1-\sum\limits_{i=1}^n \alpha_i\prod\limits_{j=1}^{i-1}[1-\alpha_j]\\ &=1-\alpha_1-(1-\alpha_1)\alpha_2-(1-\alpha_1)(1-\alpha_2)\alpha_3 - (1-\alpha_1)(1-\alpha_2)\cdots(1-\alpha_{n-1})\alpha_n\\ &=(1-\alpha_1)[1-\alpha_2-(1-\alpha_2)\alpha_3-\cdots-(1-\alpha_2)\cdots(1-\alpha_{n-1})\alpha_n]\\ &=(1-\alpha_1)(1-\alpha_2)[1-\alpha_3-\cdots-(1-\alpha_3)\cdots(1-\alpha_{n-1})\alpha_n]\\ &=\cdots\\ &=(1-\alpha_1)(1-\alpha_2)\cdots(1-\alpha_n) \end{aligned} 1S(p)=1i=1nαij=1i1[1αj]=1α1(1α1)α2(1α1)(1α2)α3(1α1)(1α2)(1αn1)αn=(1α1)[1α2(1α2)α3(1α2)(1αn1)αn]=(1α1)(1α2)[1α3(1α3)(1αn1)αn]==(1α1)(1α2)(1αn)这就是光线穿过所有Gaussians后的透光率,所以 S ( p ) S(\mathbf p) S(p)也就是所有Gaussians(叠加)的不透光率。显然 S ( p ) < 1 S(\mathbf p)<1 S(p)<1。当 S ( p ) ≠ 1 S(\mathbf p)\ne 1 S(p)=1时,背景颜色将会对像素颜色有贡献。但是一个完全重建的场景不应该体现出背景颜色,故 S ( p ) S(\mathbf p) S(p)是否接近 1 1 1可以判断该像素点所对光线上的Gaussian重建程度,进而反映置信度。

1. 初始化(Initialization)

第一帧不进行相机追踪,把RT矩阵设置为单位阵。第一帧的所有像素都用来初始化Gaussians。对于每个像素,新增一个颜色为该像素颜色、不透明度为 0.5 0.5 0.5、中心深度为该像素的深度值、半径满足投影到图像上半径为一像素的Gaussian。换言之,半径等于 r = D f r=\frac{D}{f} r=fD,其中 D D D f f f分别为深度和焦距。

2. 相机追踪(Tracking)

t + 1 t+1 t+1帧,相机的位姿被初始化为第 t t t帧的位姿+一个恒定的速度,例如 E t + 1 = E t + ( E t − E t − 1 ) E_{t+1}=E_t+(E_t-E_{t-1}) Et+1=Et+(EtEt1)其中 E t E_t Et是第 t t t帧相机的位置坐标和旋转四元数。然后相机的位姿会经过梯度下降优化,目标函数为 L t = ∑ ∀ pixel  p [ S ( p ) > 0.99 ] [ L 1 ( D ( p ) ) + 0.5 L 1 ( C ( p ) ) ] L_t=\sum\limits_{\forall\text{pixel }\mathbf p} [S(\mathbf p)>0.99] [L_1(D(\mathbf p))+0.5L_1(C(\mathbf p))] Lt=pixel p[S(p)>0.99][L1(D(p))+0.5L1(C(p))]其中 L 1 L_1 L1代表 L 1 loss L_1\text{ loss} L1 loss D ( p ) D(\mathbf p) D(p) C ( p ) C(\mathbf p) C(p)分别代表像素 p \mathbf p p的深度和颜色。 0.5 0.5 0.5是颜色误差的权重(类似于论文[1]中的 λ p h o \lambda_{pho} λpho)。一个很重要的点是loss只计算 S ( p ) S(\mathbf p) S(p)较高的像素,因为这部分的重建已经是较完善的了。如果某一点的深度信息不存在,则 L 1 loss L_1\text{ loss} L1 loss返回 0 0 0

3. 高斯致密化(Gaussian Densification)

每一帧都会在重建不完全的地方插入新的Gaussians。该方法定义了以下“致密化掩码”来确定应该在哪里插入新Gaussians:
也就是说会在两种情况下新增Gaussian:像素 p \mathbf p p处的 S S S值太小(后面的背景都露出来了),或者此处由Gaussians给出的预测深度 D D D小于真实深度 D G T D_{\mathrm{GT}} DGT L 1 L_1 L1误差大于 λ \lambda λ(设为 50 50 50)乘以深度中位数误差(Median Depth Error, MDE)。对每个像素,如果该掩码为真,则以与初始化相同的方式插入新Gaussian。

4. 高斯场景更新(Gaussian Map Updating)

该方法从最新重建结果开始优化。每 n n n帧选取一帧作为关键帧。该方法选取 k k k帧指导优化,包括当前帧,上一帧和 k − 2 k-2 k2个与当前帧有高度重叠的以前的帧。重叠的判别方式是取当前帧深度图的点云并检查多少个点在每一个关键帧的视锥中。

这部分优化的loss与相机追踪阶段类似,只不过该方法不用 S ( p ) S(\mathbf p) S(p)(silouette mask)了,因为他想对所有像素进行优化。此外,该方法还为RGB渲染添加了一个SSIM loss,并移除不透明度接近 0 0 0或者体积太大的Gaussians,就像Gaussian Splatting原论文所做的那样。

GS原论文中的loss公式:

[3] Gaussian-SLAM

该论文处理的对象依然是真实世界单个相机拍摄的RGBD视频。该方法对好的深度数据有较高要求(见14页Limitations and Future Work)。

1. 子场景(Sub-map)

为了避免灾难性遗忘、过拟合和计算复杂度过高,该方法将输入分块处理,对应不同的子场景。当前的子场景被称为活动子场景(active sub-map)。当当前帧相对于活动子场景首帧的平移超过阈值 d t h r e d_{\rm thre} dthre或欧拉角超过阈值 θ t h r e \theta_{\rm thre} θthre时,就新建一个子场景作为活动子场景。任何时候,算法都只会处理活动子场景。

每5帧取一帧作为关键帧(见Experiments的Implementation Details)。每个关键帧都可能会添加新Gaussians。对于每个子场景的第一帧,算法在帧中颜色梯度较高的区域均匀地选取 M c M_c Mc个点。在随后的关键帧中,算法在渲染的 α \alpha α值低于一个阈值 α n \alpha_n αn的区域随机选取 M k M_k Mk个点。新Gaussian的中心位置是随机选取的点,但还要满足以下要求:在当前子场景、半径为 ρ \rho ρ的邻域内没有其他Gaussian。新Gaussian是各向异性的(即不是球体),它们的缩放参数取当前子场景内离它最近的Gaussian的距离。

算法不会复制或删除Gaussian。算法会渲染一个子场景内的所有关键帧来进行优化,并将40%的迭代次数用在新的关键帧上。

2. 形状和颜色编码(Geometry and Color Encoding)

该论文与[2]一样使用 L 1 L_1 L1范数定义深度误差 L d e p t h L_{\mathrm{depth}} Ldepth和颜色误差 L c o l o r L_{\mathrm{color}} Lcolor,并且也加入了SSIM loss(颜色的 L 1 L_1 L1误差与SSIM之间的权重比例为 5 : 1 5:1 5:1)。同时,该论文也与[1]类似使用了各向同性正则化来惩罚拉得太长的Gaussians: L r e g = ∑ k ∈ K ∣ s k − s ˉ k ∣ 1 ∣ K ∣ L_{\mathrm{reg}} = \cfrac{\sum\limits_{k\in K}|s_k-\bar s_k|_1}{|K|} Lreg=KkKsksˉk1其中 s k s_k sk是Gaussian的缩放参数, s ˉ k \bar s_k sˉk是子场景中所有Gaussian缩放参数的均值(这一点与论文[1]不同,[1]中 s ˉ k \bar s_k sˉk是单个Gaussian缩放的均值) k k k是该子场景中Gaussian的ID, ∣ K ∣ |K| K是子场景中Gaussian的个数。

该方法以下面的式子作为目标函数优化当前子场景的Gaussians:

3. 相机追踪(Tracking)

这部分优化的是第 i i i帧相机相对于第 i − 1 i-1 i1帧的相对位姿(relative camera pose)。相机外参的初始值也遵循[2]中的“恒定速度假设”,即当前帧、上一帧和上上一帧的外参呈等差数列(就平移向量和旋转四元数而言)。在优化这部分时,Gaussians的参数是冻结的。这部分的目标函数是
其中 M i n l i e r M_{\mathrm{inlier}} Minlier是两一个布尔掩码,用于排除一些重建不完全的像素,这些像素的深度误差大于当前重渲染深度图中深度误差中位数的 50 50 50倍; M a l p h a = α 3 M_{\mathrm{alpha}}=\alpha^3 Malpha=α3(称为soft alpha mask,其中 α \alpha α是渲染出来的 α \alpha α值,相当于[2]中的 S ( p ) S(\mathbf p) S(p)),用于排除对于光线透明度较高的像素。

[4] GS-SLAM

这篇论文是最早的(2023年11月),其核心是“RGB-D re-rendering”(虽然没说是不是单目相机)。论文提出的方法也依赖高质量的深度数据。

1. 自适应3D高斯扩张重建(Adaptive 3D Gaussian Expanding Mapping)

对于每个关键帧,算法更新并优化3D高斯场景。优化的目标是最小化深度和颜色的 L 1 L_1 L1误差。

自适应3D高斯扩张策略:对于RGB-D序列的第一帧,算法从分辨率为 H × W H\times W H×W的图片中随机选取一半像素并利用深度数据将像素点反投影(back-projecting)到三维空间去,并以这些3D位置初始化Gaussians的中心坐标,此时Gaussians的球谐度数设置为0,颜色(直流分量)设置为像素点的颜色。在第一帧,场景通过重投影误差进行优化。另一半的像素用于将大Gaussians分解成小Gaussians并且从不同方向复制它们,从而弥补缺失的细节。

增加Gaussians:在每个关键帧,新的Gaussians会在不可靠的像素的反投影上创建。判断像素点是否可靠的方法是:检查其累积不透明度 T T T(等于[2]中的 S p S_\mathbf p Sp)是否小于阈值 τ T \tau_T τT或重渲染深度 D ^ \hat D D^的误差 ∣ D − D ^ ∣ |D-\hat D| DD^是否大于 τ D \tau_D τD。这些不可靠的像素点主要就是新观察到的区域。

删除Gaussians:由于自适应方法是不稳定的,有的时候会出现浮游的Gaussians。为了解决这个问题,算法在新增Gaussians后会检查当前相机视锥内的所有可见Gaussians并大幅度地减小位置不在场景表面的Gaussians的不透明度。准确的说,算法检查每个Gaussian中心投影到像平面后对应像素点的真实深度,并比较Gaussian深度与真实深度:二者之差大于阈值 γ \gamma γ,则该Gaussian的不透明度乘以 η \eta η η < < 1 \eta<<1 η<<1)。

2. 相机追踪(Tracking)

该论文依然遵循[2]中的“恒定速度假设”对相机位姿进行初始化。相机位姿优化的目标函数是颜色误差(注意这里没有用到深度误差)。

由粗到细的相机追踪:为了解决重投影时伪影影响相机位姿估计的问题,论文提出了Coarse-to-Fine Camera Tracking。首先渲染一个长宽各为原来一半的粗粒度图像(像素点是随机选取的),并迭代优化相机位姿 T c T_c Tc次。再用目前得到的相机位姿进行全分辨率的细粒度重投影,并像删除Gaussians的方法一样排除深度不对劲的Gaussians的影响。最后用细粒度图像迭代优化位姿 T f T_f Tf次。注意算法只投影以前观察到的区域。

3. 关键帧选取

选取的标准有两个:

  • 图像可靠部分与总大小的比例;
  • 当前帧与最近关键帧的差异是否达到阈值 μ k \mu_k μk

4. Bundle Adjustment

这一阶段算法共同优化相机位姿和3D Gaussians的参数。在关键帧数据库中随机选取 K K K个关键帧用于优化,目标函数和三维重建阶段类似。前一半迭代只优化3D Gaussians,后一半同时优化Gaussians和相机位姿。目标函数如下:

二、方法的异同

共同点

  1. 均简化了球谐(spherical harmonics)的表示(目的是提升速度)。[1][2][3]直接省略了球谐,用RGB值表示Gaussian的颜色。[4]用最大度数为 1 1 1的球谐,使得表示颜色的系数共有 12 12 12个。
  2. 深度和颜色误差均采用 L 1 L_1 L1范数。

不同点

未完待续~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/783774.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

汇编语言——用INT 21H 的A号功能,输入一个字符串存放在内存,倒序输出

用INT 21H 的A号功能&#xff0c;输入一个字符串“Hello, world!”&#xff0c;存放在内存&#xff0c;然 后倒序输出。 在DOS中断中&#xff0c;INT 21H是一个常用的系统功能调用中断&#xff0c;它提供了多种功能&#xff0c;其中A号功能用于字符串的输入。 在使用这个功能时…

【PSINS工具箱】基于工具箱,自己设计的轨迹,并生成IMU数据和三维视图(完整代码)

完整代码 在有工具箱的情况下&#xff0c;直接运行代码&#xff0c;即可 % 基于PSINS工具箱的三维轨迹生成、三维图像绘制与IMU数据生成 % date:2024-2-13 % Evand&#xff08;evandworldqq.com&#xff09; % Ver1 clear;clc;close all; glvs ts 0.1; % sampling int…

linux自定义命令

文章目录 1、自定义命令介绍2、自定义命令步骤 (centos7)2.1 新建隐藏目录存放自定义命令脚本文件2.2 将新建的目录配置环境变量2.3 取别名的方式简化已有命令2.4 编写自定义命令脚本 1、自定义命令介绍 不管是linux系统还是windows系统都支持自定义命令&#xff0c;windows端…

学习 C++ 一定要搭配 Linux 吗?

学习C并不一定非要搭配Linux&#xff0c;但使用Linux环境进行学习和开发确实有其独特的优势&#xff0c;尤其对于深入理解和实践某些高级主题及特定领域的开发工作。以下是关于是否需要搭配Linux学习C的详细分析&#xff1a; 为了帮助您更好地入门并深入掌握C&#xff0c;我们精…

PLC的大脑和心脏——CPU及西门子S7-1200CPU分类、CPU型号及端子接线图示例

CPU不断地采集输入信号&#xff0c;执行用户程序&#xff0c;刷新系统的输出。 根据供电方式和输入/输出方式的不同&#xff0c;西门子S7-1200 CPU分为3类&#xff0c;如下图1。 图1 CPU的分类 第1对字母&#xff0c;表示CPU的供电方式&#xff0c;AC&#xff08;Alternating…

代码随想录第25天|216.组合总和III 17.电话号码的字母组合

216.组合总和III 216. 组合总和 III - 力扣&#xff08;LeetCode&#xff09; 代码随想录 (programmercarl.com) 和组合问题有啥区别&#xff1f;回溯算法如何剪枝&#xff1f;| LeetCode&#xff1a;216.组合总和III_哔哩哔哩_bilibili 找出所有相加之和为 n 的 k 个数的组…

【KingSCADA】播放语音

1.函数介绍 PlaySound(string strWaveFileName, int nMode);下面是官方帮助文档中的解释&#xff1a; 2.生成语音文件 3.使用脚本播放音频文件 将音频文件存放在工程目录下面&#xff0c;我存放在了…\Resources\文件夹下&#xff1a; 我简单的写了一个定时1分钟播放一次语…

Fluent循环流动案例(模拟循环泵,含换热、散热、VOF、UDF)

在此特意记录下循环通道的fluent思路和参数设置 该案例中&#xff0c;主要关注的是催化剂域的温度变化情况&#xff0c;因此需要监控的是温度的变化曲线&#xff0c;关于泵如何进行模拟&#xff0c;这里有两种思路&#xff0c;一种是用风扇代替泵&#xff0c;优点是整个流体域基…

HarmonyOS ArkTS 骨架屏加载显示(二十五)

目录 前言1、骨架屏代码显示2、代码中引用3、效果图展示 前言 所谓骨架屏&#xff0c;就是在页面进行耗时加载时&#xff0c;先展示的等待 UI, 以告知用户程序目前正在运行&#xff0c;稍等即可。 等待的UI大部分是 loading 转圈的弹窗&#xff0c;有的是自己风格的小动画。其实…

武汉大学开设 “雷军班”:计算机专业、今年招收 15 名本科生。武汉大学已经联合小米成立了机器系

更多精彩内容在公众号。 3月25日&#xff0c;武汉大学官方网站发布了一则新闻&#xff0c;报道了校长张平文对计算机学院的调研活动。在报道中&#xff0c;张平文校长特别强调了关于“雷军班”及机器人系的发展规划。他表示&#xff0c;希望计算机学院能够立足于更高层次&#…

【python从入门到精通】-- 第三战:输入输出 运算符

&#x1f308; 个人主页&#xff1a;白子寰 &#x1f525; 分类专栏&#xff1a;python从入门到精通&#xff0c;魔法指针&#xff0c;进阶C&#xff0c;C语言&#xff0c;C语言题集&#xff0c;C语言实现游戏&#x1f448; 希望得到您的订阅和支持~ &#x1f4a1; 坚持创作博文…

前端虚拟滚动列表 vue虚拟列表

前端虚拟滚动列表 在大型的企业级项目中经常要渲染大量的数据&#xff0c;这种长列表是一个很普遍的场景&#xff0c;当列表内容越来越多就会导致页面滑动卡顿、白屏、数据渲染较慢的问题&#xff1b;大数据量列表性能优化&#xff0c;减少真实dom的渲染 看图&#xff1a;绿色…

Prometheus +Grafana +node_exporter可视化监控Linux + windows虚机

1、介绍 背景&#xff1a;需要对多台虚机进行负载可视乎监控&#xff0c;并进行及时的报警 2、架构图 node_exporter &#xff1a;主要是负责采集服务器的信息。 Prometheus &#xff1a;主要是负责存储、抓取、聚合、查询方面。 Grafana &#xff1a; 主要是…

Pandas | value_counts() 的详细用法

value_counts() 函数得作用 用来统计数据表中&#xff0c;指定列里有多少个不同的数据值&#xff0c;并计算每个不同值有在该列中的个数&#xff0c;同时还能根据指定得参数返回排序后结果。 返回得是Series对象 value_counts(values,sortTrue, ascendingFalse, normalizeFal…

SSTI 服务器端模板注入(Server-Side Template Injection)

1.Web_python_template_injection {{}}是变量包裹标识符&#xff0c;里面存放的是一个变量&#xff0c;当你输入 http://61.147.171.105:55121/{{8*8}} 执行成功&#xff0c;说明存在模版注入。接下来&#xff0c;开始想办法编代码拿到服务器的控制台权限 。 首先&#xff0c…

unity 打包安卓错误汇集

Failed to find target with hash string "android-34’ in: D:Pr 他说找不到sdk34level的我用as打开后卸载又重装&#xff0c;最后解决了 我放到Plugins/Android/下面的Java代码没有被编译 这个不知道为什么。我故意把代码写的有问题&#xff0c;会报错那种&#xff…

Java中常见的锁策略

目录 乐观锁 vs 悲观锁 悲观锁: 乐观锁&#xff1a; 重量级锁 vs 轻量级锁 ⾃旋锁&#xff08;Spin Lock&#xff09; 公平锁 vs 非公平锁 可重⼊锁 vs 不可重入锁 读写锁 乐观锁 vs 悲观锁 悲观锁: 总是假设最坏的情况&#xff0c;每次去拿数据的时候都认为别…

AES加密解密算法

一&#xff0c;AES算法概述 AES属于分组加密&#xff0c;算法明文长度固定为128位&#xff08;单位是比特bit&#xff0c;1bit就是1位&#xff0c;128位等于16字节&#xff09; 而密钥长度可以是128、192、256位 当密钥为128位时&#xff0c;需要循环10轮完成加密&#xff0…

【Threejs基础教程-光影篇】5.2 Threejs 阴影系统

5.2 Threejs阴影系统 学习ThreeJS的捷径在用光影系统之前threejs是实时光影web端目前没有优质的实时光影实时光影会大幅增加渲染压力没有独显的电脑不建议添加实时光影 阴影配置什么样的灯光可以产生阴影什么样的物体可以产生阴影和接受阴影注意开启阴影渲染灵活运用阴影 平行光…

判断一个数据能否同时被3和5整除

一、运行结果&#xff1b; 二、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>int main() {//初始化变量值&#xff1b;int a 0;//提示用户printf("请输入一个整数\n");//获取用户输入数据&#xff1b;scanf("%d", &am…