实训笔记7.25

实训笔记7.25

  • 7.25笔记
    • 一、MapReduce的特殊使用场景
      • 1.1 通过MapReduce程序实现多文件Join操作
        • 1.1.1 通过在Reduce端实现join操作
        • 1.1.2 通过在Map端实现join操作
      • 1.2 MapReduce中的计数器的使用
        • 1.2.1 计数器使用两种方式
      • 1.3 MapReduce实现数据清洗
    • 二、MapReduce的OutputFormat机制
    • 三、MapReduce整体流程涉及到一些核心组件
    • 四、MapReduce的调优相关知识点
      • 4.1 针对磁盘IO问题,MR程序出现了一种压缩和解压缩机制,可以解决MR程序运行中涉及到大量磁盘IO的问题
        • 4.1.1 常用的压缩算法的适用场景
        • 4.1.2 MapReduce程序可以压缩数据的位置
        • 4.1.3 在MapReduce中开启压缩机制
    • 五、Hadoop的第三大组成--YARN框架
      • 5.1 YARN的基本架构组成
        • 5.1.1 ResourceManager:YARN集群的管理者
        • 5.1.2 NodeManager
        • 5.1.3 Container
        • 5.1.4 ApplicationMaster
      • 5.2 YARN的详细工作流程--运行MapReduce
    • 六、YARN的资源调度器问题
      • 6.1 YARN中一共三种的资源调度器
        • 6.1.1 FIFIO资源调度器
        • 6.1.2 容量调度器
        • 6.1.3 公平调度器
        • 6.1.4 修改:yarn-site.xml
      • 6.2 默认使用的容量调度器,容量调度器可以有多个队列,每一个队列占用集群的部分资源,默认情况下容量调度只有一个队列default,队列占有集群的所有资源,如果配置容量调度器的第二个队列:capacity-scheduler.xml
    • 七、YARN的web网站问题
      • 7.1 存在问题
      • 7.2 解决上述问题的方案
    • 代码示例

7.25笔记

一、MapReduce的特殊使用场景

1.1 通过MapReduce程序实现多文件Join操作

1.1.1 通过在Reduce端实现join操作

核心思路是将多个文件读取之后,以多文件的关联字段为key,剩余为value发送给reduce,reduce通过关联字段将value聚合,随后进行join操作

Reduce端join非常容易出现数据倾斜问题

1.1.2 通过在Map端实现join操作

核心思路将多文件中的这些小文件(几十兆或者几十KB左右)在驱动程序中把数据文件缓存起来,只对大文件数据进行切片处理,在map处理数据时,现在setup方法中对缓存的小文件进行读取缓存(缓存的时候以关联字段为key进行缓存)

1.2 MapReduce中的计数器的使用

计数器在MapReduce中是用来统计分布式计算程序中一些感兴趣数据的一些数值。计数器MR程序运行中已经给我们提供了很多的计数器,如果我们觉得这些计数中没有我们所需要的数据的数值,我们可以自定义计数器去使用。

1.2.1 计数器使用两种方式

  1. 使用普通的字符串

    context,getCounter(String groupName,String counterName).increment(num);

  2. 使用枚举类

    context.getCounter(Enum的对象).increment(num)

1.3 MapReduce实现数据清洗

数据清洗就是我们把原始数据中一些不合法非法,不感兴趣的数据清洗处理掉

因此数据清洗一般只需要map阶段即可,在map阶段只需要对合法的数据进行context,write操作,不合法的数据直接舍弃

二、MapReduce的OutputFormat机制

TextOutputFormat:输出的是纯文本文档数据key-value之间以\t分割的,一个kv使用占用一行

SequenceFileOutputFormat:输出是一个SequenceFile文件格式的数据,SequenceFile文件特殊在文件是一个普通的文件,但是文件中的数据是二进制的并且可以被压缩的数据 文件没有被压缩,只是数据被压缩了,数据压缩还有三种模式:none、record、block

默认情况下一个reduceTask输出一个文件,文件名固定的part-r/m-xxxxx

自定义OutputFormat实现相关数据的写出

三、MapReduce整体流程涉及到一些核心组件

  1. InputFormat组件
    1. 切片机制
    2. 读取kv机制
  2. Mapper组件处理一个切片的数据
  3. Partitioner组件map阶段的输出的数据计算分区使用
  4. WritableComparable组件进行输出数据排序,三次排序
  5. Combiner组件(可选组件)进行map端输出数据的局部合并
  6. Reduce组件处理一个分区的数据,聚合处理
  7. OutputFormat组件输出最终的结果数据

四、MapReduce的调优相关知识点

MapReduce运行中,可能会产生很多影响MR计算效率的一些问题:数据倾斜问题、大量的磁盘IO、小文件过多…

4.1 针对磁盘IO问题,MR程序出现了一种压缩和解压缩机制,可以解决MR程序运行中涉及到大量磁盘IO的问题

压缩和解压缩是MR程序提供的一种,在Map输出或者reduce输出,或者map输入之前,可以通过指定的压缩算法对文件或者中间数据进行压缩,这样的话可以减少磁盘IO的数据量,如果我们在map的中间输出指定了压缩,那么reduce拉取会数据之后,会根据指定的压缩机制对压缩的数据进行解压缩。

压缩机制确实可以提升我们MR程序的运行效率,但是也是有成本的,压缩因为使用专门的算法,算法越复杂,压缩的时候程序的CPU的负载越大。

压缩适用于IO密集的MR程序,计算密集的MR程序不适用

4.1.1 常用的压缩算法的适用场景

  1. gzip

    1. 压缩的文件无法被MapReduce切片
    2. 压缩效率和压缩速度都相对而言比较快,如果一个文件压缩之后在128兆左右的话可以适用这个压缩机制
  2. bzip2

    1. 压缩的文件支持切片的
    2. 压缩效率很高,但是压缩速度非常慢,如果我们MR程序对时间要求不高,但是数据量非常庞大的情况下
  3. lzo

    1. 压缩的文件支持切片,但是如果要支持切片是非常复杂的,MR程序支持适用lzo算法,但是MR程序没有自带这个算法

    2. 压缩效率不高,胜在速度非常快

    3. 使用比较麻烦的,因为Hadoop没有自带这个算法,使用的话得需要下载插件,引入依赖…

  4. snappy

    1. 压缩文件不支持切片
    2. 压缩速度非常快,是所有压缩算法中最快的了,压缩的效率比gzip低

4.1.2 MapReduce程序可以压缩数据的位置

  1. Map的输入采用一些支持切片的压缩机制:bzip2、lzogzip和snappy也可以用,只不过最好保证数据压缩之后在128兆左右
  2. map的输出snappy机制
  3. reduce的输出最好也是支持切片的压缩机制

4.1.3 在MapReduce中开启压缩机制

在MR中使用压缩机制,不需要我们去进行手动的压缩和解压缩,只需要在MR的合适的位置指定我们使用的是何种压缩机制,MR程序会自动的调用设置的压缩和解压缩算法进行自动化操作。

  1. mapper的输入开启压缩

    只需要在Configuration或者core-site.xml文件增加如下一行配置即可:

    配置名:io.compression.codecs   
    配置值:org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec,org.apache.hadoop.io.compress.Lz4Codec,org.apache.hadoop.io.compress.SnappyCodec
    只需要把上述配置配置好,MR程序在处理输入文件时,如果输入文件是上述配置的压缩的后缀
    
  2. mapper的输出可以开启压缩

    mapreduce.map.output.compress    true/false
    mapreduce.map.output.compress.codec       org.apache.hadoop.io.compress.GzipCodec
    
  3. reduce的输出可以开启压缩

    FileOutputFormat.setCompressOutput(job,true);//是否开启输出压缩 FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);//reduce输出压缩使用的压缩机制.
    

可以使用如下命令检查Hadoop集群目前本身不需要安装插件就支持的压缩算法

hadoop checknative

五、Hadoop的第三大组成–YARN框架

YARN是一个分布式资源调度系统,专门用来给分布式计算程序提供计算资源的,而且YARN只负责进行资源的提供,不管计算程序的逻辑,因此YARN这个软件非常的成功,因为YARN不关注程序计算逻辑,因此只要是分布式计算程序,只要满足YARN的运行要求,那么就可以在YARN上进行运行,由YARN进行资源调度。spark、flink等等分布式计算程序都可以在YARN上运行。

5.1 YARN的基本架构组成

YARN之所以提供分布式计算资源,主要原因就是因为YARN的设计架构

5.1.1 ResourceManager:YARN集群的管理者

1、负责进行资源的配置

2、负责整个集群的状态

3、接受客户端或者applicationmaster的资源申请

5.1.2 NodeManager

1、负责接受RM给NM分配的task任务(就是资源的打包任务)

2、负责启动Container容器(打包的计算程序所需的运行资源)

5.1.1~5.1.2:YARN启动之后就会有的进程

5.1.3 Container

封装了一组计算资源的容器,包含了计算程序所需的资源,资源的具体的配额都是客户端或者ApplicationMaster去向RM申请

5.1.4 ApplicationMaster

任何一个分布式计算程序如果想在YARN上运行,分布式计算程序必须能启动一个ApplicationMaster进程,比如MR程序在YARN上运行就会启动MRAppcationMaster。这个进程不是由YARN自带的,而是分布式计算程序想在YARN上运行,分布式计算程序必须得有这么一个进程。

YARN的工作核心,YARN之所以不知道分布式计算程序的计算逻辑,还能给分布式计算程序提供资源,全凭借ApplicationMaster的存在,ApplicationMaster是分布式程序运行的核心,监控分布式计算程序有没有运行成功、负责向RM申请分布式程序运行的资源。

5.1.3~5.1.4:当有分布式计算程序在YARN上运行的时候,才会出现这两个进程

5.2 YARN的详细工作流程–运行MapReduce

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ye5VNQhS-1690280574965)(./7.25/9a563b4f928b184013a5ed9db62ea27b8079d59039a6596d7fed9a7b01bfbdab.png)]

六、YARN的资源调度器问题

YARN在进行资源分配的时候,RM需要先将client或者AM申请的资源初始化成为一个task任务,资源的task任务不是直接下发给NM,而是先把task任务给加入到一个RM的调度器当中,由调度器在合适的时机下发任务给NM。

6.1 YARN中一共三种的资源调度器

6.1.1 FIFIO资源调度器

是一种队列调度器,每一个任务加入到调度器中,按照时间的先后依次排列,给NM下发任务的时候,是先来的先分配,后来等待集群资源充足继续分配。 只有一个队列,队列使用的集群中所有的资源

特点: 如果有些任务比较重要,必须排队,只有得到队列中你排到了最前面了才会给你分配

Hadoop1.x版本YARN默认的调度器机制

6.1.2 容量调度器

也是一个队列调度器,但是多个队列并行进行分配,每一个队列具备YARN集群中的部分资源。在同一个时刻,可以下发多个任务

Hadoop2.x和hadoop3.x默认调度器

6.1.3 公平调度器

也是可以具备多个队列,每个队列具备集群中的部分资源,不一样的地方在于每一个队列中的任务不等待,每一个任务都会启动,均匀的享有集群的资源。

6.1.4 修改:yarn-site.xml

yarn.resourcemanager.scheduler.class

org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler

6.2 默认使用的容量调度器,容量调度器可以有多个队列,每一个队列占用集群的部分资源,默认情况下容量调度只有一个队列default,队列占有集群的所有资源,如果配置容量调度器的第二个队列:capacity-scheduler.xml

<property>   <name>yarn.scheduler.capacity.root.queues</name>   <value>default,queueA</value>    <description>      The queues at the this level (root is the root queue).    </description>  
</property> 

容量调度器有几个队列

<!-- default 队列占用的资源容量百分比 40% --> 
<property>    <name>yarn.scheduler.capacity.root.default.capacity</name>    <value>40</value>  </property>  <!-- default 队列占用的最大资源容量百分比 60%-->  
<property>    <name>yarn.scheduler.capacity.root.default.maximum-capacity</name>    <value>60</value>  
</property>

如果要配置多个队列,保证多个队列的capacity加起来是100,每一个队列的最大占用容量要大于等于配置队列容量

七、YARN的web网站问题

YARN提供一个web网站,yarn,通过这个web网站,可以查看YARN集群的资源信息和队列信息,以及可以查看YARN上运行的分布式计算程序的状态以及运行的日志输出

7.1 存在问题

  1. YARN记录的分布式运行程序,只是本次开启有效,如果YARN关闭重启了,那么以前在YARN上运行的日志全部消失了
  2. YARN记录的分布式运行程序,在网站上看不到详细的日志信息,因此后期维护或者查看MR运行信息就很麻烦了

7.2 解决上述问题的方案

  1. 第一步:配置MapReduce的历史服务器JobHistory,可以帮助YARN记忆以前开启的时候运行的MR程序 历史服务器的配置主要在mapred-site.xml文件中配置,主要配置两项
<property>      <name>mapreduce.jobhistory.address</name>      <value>single:10020</value> </property> <property>    	<name>mapreduce.jobhistory.webapp.address</name>    <value>single:19888</value> 
</property>

如果使用历史服务器,必须启动历史服务器,如果不启动,历史服务器不会记录YARN上运行的分布式计算程序 mr-jobhistory-daemon.sh start historyserver

  1. 第二步:配置YARN聚合MapReduce运行日志信息–可以在YARN的web界面查看MR的详细日志 配置yarn-site.xml文件
<!-- 日志聚集功能启动 --> 
<property>    <name>yarn.log-aggregation-enable</name>    <value>true</value> </property> 
<!-- 日志保留时间设置7天 --> 
<property>        <name>yarn.log-aggregation.retain-seconds</name>        <value>604800</value> 
</property> 
<property>       <name>yarn.log.server.url</name>       <value>http://single:19888/jobhistory/logs</value>         
</property>

代码示例

package com.sxuek.wordcount;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;public class WCDriver {public static void main(String[] args) throws IOException, URISyntaxException, InterruptedException, ClassNotFoundException {//1、准备一个配置文件对象Configuration configuration = new Configuration();configuration.set("fs.defaultFS","hdfs://192.168.68.101:9000");//2、创建一个封装MR程序使用Job对象Job job = Job.getInstance(configuration);job.setJarByClass(WCDriver.class);//指定输入文件路径  输入路径默认是本地的,如果你想要是HDFS上的 那么必须配置fs.defaultFS  指定HDFS的路径FileInputFormat.setInputPaths(job,new Path("/wordcount.txt"));/*** 4、封装Mapper阶段*/job.setMapperClass(WCMapper.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(LongWritable.class);/*** 6、封装Reducer阶段*/job.setReducerClass(WCReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(LongWritable.class);job.setNumReduceTasks(1);/*** 7、封装指定的OutputFormat,如果没有指定OutputFormat  默认使用TextOutputFormat*/Path path = new Path("/output");FileSystem fs = FileSystem.get(new URI("hdfs://192.168.68.101:9000"), configuration, "root");if (fs.exists(path)){fs.delete(path,true);}job.setOutputFormatClass(WCOutputFormat.class);FileOutputFormat.setOutputPath(job,path);/*** 8、提交程序运行*    提交的时候先进行切片规划,然后将配置和代码提交给资源调度器*/boolean b = job.waitForCompletion(true);System.exit(b?0:1);}
}class WCMapper extends Mapper<LongWritable, Text,Text,LongWritable>{@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws IOException, InterruptedException {String line = value.toString();String[] words = line.split(" ");for (String word : words) {context.write(new Text(word),new LongWritable(1L));}}
}class WCReducer extends Reducer<Text,LongWritable,Text,LongWritable>{@Overrideprotected void reduce(Text key, Iterable<LongWritable> values, Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {long sum =0l;for (LongWritable value : values) {sum += value.get();}context.write(key,new LongWritable(sum));}
}class WCOutputFormat extends FileOutputFormat<Text,LongWritable>{@Overridepublic RecordWriter<Text, LongWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {return new WCRecordWriter();}
}class WCRecordWriter extends RecordWriter<Text,LongWritable>{private Connection connection;private PreparedStatement preparedStatement;public WCRecordWriter(){/*** 在无参构造器中先连接上MySQL*/try {Class.forName("com.mysql.cj.jdbc.Driver");connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/mr?serverTimezone=UTC&useUnicode=true&characterEncoding=UTF-8","root","root");String sql = "insert into wordcount(word,count) values(?,?)";preparedStatement = connection.prepareStatement(sql);} catch (ClassNotFoundException e) {throw new RuntimeException(e);} catch (SQLException e) {throw new RuntimeException(e);}}@Overridepublic void write(Text key, LongWritable value) throws IOException, InterruptedException {String word = key.toString();Long count = value.get();try {preparedStatement.setString(1,word);preparedStatement.setInt(2,count.intValue());preparedStatement.executeUpdate();} catch (SQLException e) {throw new RuntimeException(e);}}@Overridepublic void close(TaskAttemptContext context) throws IOException, InterruptedException {if (preparedStatement != null){try {preparedStatement.close();} catch (SQLException e) {throw new RuntimeException(e);}}if (connection != null){try {connection.close();} catch (SQLException e) {throw new RuntimeException(e);}}}
}
package com.sxuek.compress;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.io.compress.DefaultCodec;
import org.apache.hadoop.util.ReflectionUtils;import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;/*** 压缩和解压缩其实就是使用IO流的形式对数据读取和写出* Hadoop的default压缩算法的使用* 165s* 96%*/
public class Demo01 {public static void main(String[] args) throws IOException {DefaultCodec defaultCodec = ReflectionUtils.newInstance(DefaultCodec.class, new Configuration());FileOutputStream fos = new FileOutputStream("f://CentOS-7-x86_64-DVD-1708.iso"+defaultCodec.getDefaultExtension());CompressionOutputStream outputStream = defaultCodec.createOutputStream(fos);FileInputStream fis = new FileInputStream("f://CentOS-7-x86_64-DVD-1708.iso");long time = System.currentTimeMillis();IOUtils.copyBytes(fis,outputStream,1*1024*1024);long time1 = System.currentTimeMillis();System.out.println(time1-time);}
}
package com.sxuek.compress;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.io.compress.DefaultCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.util.ReflectionUtils;import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;/*** gzip* 179s* 96%*/
public class Demo02 {public static void main(String[] args) throws IOException {GzipCodec gzipCodec = ReflectionUtils.newInstance(GzipCodec.class, new Configuration());FileOutputStream fos = new FileOutputStream("f://CentOS-7-x86_64-DVD-1708.iso"+gzipCodec.getDefaultExtension());CompressionOutputStream outputStream = gzipCodec.createOutputStream(fos);FileInputStream fis = new FileInputStream("f://CentOS-7-x86_64-DVD-1708.iso");long time = System.currentTimeMillis();IOUtils.copyBytes(fis,outputStream,1*1024*1024);long time1 = System.currentTimeMillis();System.out.println(time1-time);}
}
package com.sxuek.compress;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.util.ReflectionUtils;import java.io.FileInputStream;
import java.io.FileOutputStream;/*** bzip*/
public class Demo03 {public static void main(String[] args) throws Exception {BZip2Codec bZip2Codec = ReflectionUtils.newInstance(BZip2Codec.class, new Configuration());FileOutputStream fos = new FileOutputStream("f://CentOS-7-x86_64-DVD-1708.iso"+bZip2Codec.getDefaultExtension());CompressionOutputStream outputStream = bZip2Codec.createOutputStream(fos);FileInputStream fis = new FileInputStream("f://CentOS-7-x86_64-DVD-1708.iso");long time = System.currentTimeMillis();IOUtils.copyBytes(fis,outputStream,1*1024*1024);long time1 = System.currentTimeMillis();System.out.println(time1-time);}
}
package com.sxuek.compress;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.io.compress.SnappyCodec;
import org.apache.hadoop.util.ReflectionUtils;import java.io.FileInputStream;
import java.io.FileOutputStream;/*** snappy*/
public class Demo04 {public static void main(String[] args) throws Exception{SnappyCodec snappyCodec = ReflectionUtils.newInstance(SnappyCodec.class, new Configuration());FileOutputStream fos = new FileOutputStream("f://CentOS-7-x86_64-DVD-1708.iso"+snappyCodec.getDefaultExtension());CompressionOutputStream outputStream = snappyCodec.createOutputStream(fos);FileInputStream fis = new FileInputStream("f://CentOS-7-x86_64-DVD-1708.iso");long time = System.currentTimeMillis();IOUtils.copyBytes(fis,outputStream,1*1024*1024);long time1 = System.currentTimeMillis();System.out.println(time1-time);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/7837.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux笔记——搜索命令find、解压缩命令、vi编辑器、用户权限命令、系统信息相关命令讲解

系列文章目录 Linux笔记——磁盘进行分区与挂载介绍 Linux笔记——管道相关命令以及shell编程 Linux笔记——进程管理与网络监控技术讲解​​​​​​ Linux笔记——rpm与yum下载软件命令介绍 文章目录 系列文章目录 准备工作 一 搜索命令—— find 搜索 1.1 目标 1.…

html input 展示隐藏的密码

<!DOCTYPE html> <html> <meta http-equiv"Content-Type" content"text/html;charsetutf-8"/> <body><h2>登录表格</h2><form action"/action_page.php"><div class"container"><…

chrome查看浏览器内核日志

由于经常在网页上调试播放音视频&#xff0c;但是总遇到一些未知原因&#xff0c;导致无法正常播放&#xff0c;亟需查看浏览器内核日志&#xff0c;分析原因&#xff0c;做一下笔记。 (1) 查看浏览器快捷键属性 &#xff08;2&#xff09;在快捷键启动位置补充参数 --enable-…

菜鸡shader:L12 SD处理贴图制作时钟动画

文章目录 SD处理贴图Shader代码C#代码最后效果 SD处理贴图 呃呃感觉这节课&#xff0c;很大一部分都是在将怎么用SD来处理贴图&#xff0c;在这里就简单放一下课上的截图吧&#xff0c;我也跟着做了一下&#xff0c;虽然表盘十二个数排列间隔不一样&#xff0c;但还是稀碎地做…

脉冲频率、转速相关计算(信捷PLC C语言FC编程应用)

转速、线速度、角速度转换和计算关系请查看下面文章链接: 转速/线速度/角速度计算FC_RXXW_Dor的博客-CSDN博客里工业控制张力控制无处不在,也衍生出很多张力控制专用控制器,磁粉制动器等,本篇博客主要讨论PLC的张力控制相关应用和算法,关于绕线机的绕线算法,大家可以参看…

12.Netty源码之整体架构脉络

Netty 整体架构脉络 Netty 的逻辑处理架构为典型网络分层架构设计&#xff0c;共分为网络通信层、事件调度层、服务编排层&#xff0c;每一层各司其职。 网络通信层 网络通信层的职责是执行网络 I/O 的操作。它支持多种网络协议和 I/O 模型的连接操作。当网络数据读取到内核缓冲…

闲置旧手机搭建服务器?在安卓手机上使用Termux搭建web服务「公网远程访问」

文章目录 概述1.搭建apache2.安装cpolar内网穿透3.公网访问配置4.固定公网地址5.添加站点 概述 Termux是一个Android终端仿真应用程序&#xff0c;用于在 Android 手机上搭建一个完整的Linux 环境&#xff0c;能够实现Linux下的许多基本操作&#xff0c;不需要root权限Termux就…

docker系列5:docker安装nginx

传送门 前面介绍了docker的安装&#xff1a;docker系列1&#xff1a;docker安装 还有docker镜像加速器&#xff1a;docker系列2&#xff1a;阿里云镜像加速器 以及docker的基本操作&#xff1a; docker系列3&#xff1a;docker镜像基本命令 以及容器的基本命令&#xff1a;…

【iOS】多界面传值

文章目录 前言一、属性传值二、协议传值三、block传值四、KVO传值五、KVO的自动触发与手动触发六、通知传值总结 前言 在写网易云音乐以及3GShare包括后面的学生管理系统时&#xff0c;用到许多界面传值方法&#xff0c;特撰写博客记录目前学过的几种多界面传值方法 一、属性…

【Docker】Docker部署私有仓库的配置及应用

文章目录 一、Docker-registry 搭建本地私有仓库1. Registry 的概念2. Registry 的部署过程 二、Docker-harbor 搭建私有仓库1. 什么是Harbor2. Harbor 的特性3. Harbor的构成4. Harbor 的部署过程4.1 安装 harbor4.2 创建项目并进行上传下载4.3 上传镜像到私有仓库4.4 从私有仓…

Vue--插槽

一、插槽-默认插槽 1.作用 让组件内部的一些 结构 支持 自定义 2.需求 将需要多次显示的对话框,封装成一个组件 3.问题 组件的内容部分&#xff0c;不希望写死&#xff0c;希望能使用的时候自定义。怎么办 4.插槽的基本语法 组件内需要定制的结构部分&#xff0c;改用**…

mysql的主键选择

一.没有定义主键有什么问题 如果定义了主键&#xff0c;那么InnoDB会使用主键作为聚簇索引如果没有定义主键&#xff0c;那么会使用第一非空的唯一索引&#xff08;NOT NULL and UNIQUE INDEX&#xff09;作为聚簇索引如果既没有主键也找不到合适的非空索引&#xff0c;那么In…

【数据挖掘】时间序列的傅里叶变换:用numpy解释的快速卷积

一、说明 本篇告诉大家一个高级数学模型&#xff0c;即傅里叶模型的使用&#xff1b; 当今&#xff0c;傅里叶变换及其所有变体构成了我们现代世界的基础&#xff0c;为压缩、通信、图像处理等技术提供了动力。我们从根源上理解&#xff0c;从根本上应用&#xff0c;这是值得付…

STM32MP157驱动开发——按键驱动(线程化处理)

文章目录 “线程化处理”机制&#xff1a;内核函数线程化处理方式的按键驱动程序(stm32mp157)编程思路button_test.cgpio_key_drv.cMakefile修改设备树文件编译测试 “线程化处理”机制&#xff1a; 工作队列是在内核的线程的上下文中执行的 工作队列中有多个 work&#xff0…

Git远程仓库使用方法

目录 介绍 详细教程 1、创建远程仓库 2、在本地初始化仓库 3、关联远程仓库 4、提交代码 5、拉取到本地仓库 6、提交到Git仓库 5、将本地代码推送到远程仓库 介绍 远程仓库在协同开发中起着关键的作用&#xff0c;它提供了一个中央存储库&#xff0c;使多个开发者能够…

Hadoop中HDFS的架构

一、Switch语句 语法规则&#xff1a; ①语句中的变量类型可以是byte、short、int或者char;从javaSE5开始支持枚举类型&#xff1b; javaSE7开始&#xff0c;switch支持String。 ②没有break时&#xff0c;后续case的语句都会执行 二、修饰符 访问修饰符 Java中&#xff0c…

【C++】vector类的模拟实现(增删查改,拷贝构造,赋值运算,深浅拷贝)

文章目录 前言一、 整体1.命名空间:2构造函数&#xff1a;1普通构造2迭代器构造3初始化字符构造4拷贝构造&#xff1a; 3析构函数 二、成员函数实现1.大小1当前大小(size())2总体容量(capacity()) 2.返回头尾迭代器1begin&#xff08;&#xff09;2end&#xff08;&#xff09;…

小程序如何修改商品

​商家可能会遇到需要修改产品信息的情况。无论是价格调整、库存更新还是商品描述的修改&#xff0c;小程序提供了简便的方式来帮助你们完成这些操作。下面是一些简单的步骤和注意事项&#xff0c;帮助你们顺利地修改商品。 一、进入商品管理页面 在个人中心点击管理入口&…

矿井人员视频行为分析算法 opencv

矿井人员视频行为分析算法通过opencvpython网络模型技术&#xff0c;矿井人员视频行为分析算法实时监测人员的作业行为&#xff0c;并与安全标准进行比对&#xff0c;可以及时发现不符合安全要求的行为&#xff0c;预防事故的发生。OpenCV的全称是Open Source Computer Vision …

教师ChatGPT的23种用法

火爆全网的ChatGPT&#xff0c;作为教师应该如何正确使用&#xff1f;本文梳理了教师ChatGPT的23种用法&#xff0c;一起来看看吧&#xff01; 1、回答问题 ChatGPT可用于实时回答问题&#xff0c;使其成为需要快速获取信息的学生的有用工具。 从这个意义上说&#xff0c;Cha…