竞赛 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

文章目录

  • 0 简介
  • 1 二维码检测
  • 2 算法实现流程
  • 3 特征提取
  • 4 特征分类
  • 5 后处理
  • 6 代码实现
  • 5 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 二维码检测

物体检测就是对数字图像中一类特定的物体的位置进行自动检测。基本的检测框架有两种:

一种是以滑动窗口为单位对图像进行扫描,对扫描所得的每个子图像提取特征,并用学习到的分类器来分类该特征并且判断该子图像是否为所检测的特定物体。对象检测的一个问题是,对象在图片中的位置和尺度是未知的。算法被要求能够检测各种不同位置、不同大小的对象,这样的特性被称为位置无关性和尺度无关性。为了达到这样的特性,常见的方法是使用多尺度框架,即:通过缩放原始图像,产生一组大小不同的图像序列,然后在序列的每幅图像中都使用固定尺寸
W×H
的滑动窗口,检测算法将判断每次滑动窗口所截取的图像子窗口是否存在目标对象。滑动窗口解决了位置无关性;而图像序列中存在至少一幅图像,其包含的目标对象的尺度符合滑动窗口的尺度,这样一个图像金字塔序列解决了尺度无关性。

另一种则是在整幅图像上首先提取兴趣点,然后仅对提取出来的兴趣点分类。

因此学长把物体检测方法分为基于滑动窗口的物体检测和基于兴趣点的物体检测两类。

无论是哪种做法,整个过程都可以分为特征提取和特征分类这两个主要阶段。也就是说,物体检测的主要问题是使用什么样的特征和使用什么样的分类器。

物体检测的难点在于如何用有限的训练集来学习到鲁棒的、可以适用到各种情况下的分类器。这里所说的各种情况包括有:图像中物体的大小不同;光照条件的差异所引起的图像明暗的不同;物体在图像中可能存在的旋转和透视情况;同类物体间自身存在的差异。

这里学长以定位二维码 / 条形码为例,简述基于机器学习实现物体检测的大致算法流程。

2 算法实现流程

算法流程图如下图所示:

在这里插入图片描述

我们先把输入图像分成 25×25
的图像子块。把图像子块作为特征提取和特征分类这两个模块的基本处理对象,即对图像子块进行纹理特征提取,特征分类时判定当前处理的图像子块是否属于二维条形码的一部分

在这里插入图片描述

在特征提取模块中,我们使用纹理特征提取算法从原始输入图像中提取出多分辨率直方

在特征分类时,我们希望保留所有属于二维条形码的图像子块,同时去除所有属于背景的图像子块。在该模块中,我们使用了自适应 Spatialboost 算法。

下图为经过这步处理后的理想输出结果,图中被标记的小方块表示他们属于二维条形码的一部分。

在这里插入图片描述

3 特征提取

图像的纹理特征可以描述物体特有的属性,用以区别其他物体。纹理特征总体可分为空域和频域两大类。在本文算法中,我们采用的纹理特征均属于空域的纹理特征,也是局部特征,它们分别是多分辨率直方图特征、局部二值模式特征和边缘方向直方图特征。

多分辨率直方图特征具备旋转无关的特点。这种纹理特征保留了灰度直方图特征计算简单和保存方便的特点。同时它又可以描述纹理的局部信息,弥补了传统的灰度直方图特征的缺点。

局部二值模式特征是一种计算复杂度较低的局部特征,它具有明暗无关和旋转无关的特点。
边缘方向直方图特征与全局的光照变化是无关的,它可以提取出二维条形码纹理的几何特点。

4 特征分类

学长开发的算法所使用的分类器为自适应 Spatialboost 算法,这是对 Spatialboost
算法的一个改进。使用这个分类器是由二维条形码的特点以及我们算法框架的特点所决定的。由于我们把原始输入图像分为若干大小固定的图像子块,属于二维条形码的图像子块在空间上有很强的关联性,或者说这些属于二维条形码的图像子块都是紧密相邻的。同时由于图像子块的尺寸不大,它所包含的信息量相对较少,有的时候就很难把属于二维条形码的图像子块和属于背景的图像子块区分开(它们在特征空间上可能重叠)。如果我们可以利用子块在空间上的联系,把空间信息加入到分类器中,将有利于提高分类器的准确率。

适应 Spatialboost
算法可以同时利用纹理特征以及子块在空间上的联系,在训练过程中,将纹理特征和空间信息自适应的结合起来训练分类器。这样,当前处理的子块的分类结果不仅依赖于它自己的纹理特征,还和它周围子块的分类结果密切相关。当属于背景的图像子块的纹理特征很接近于属于二维条形码的图像子块时,我们还是可以依靠和它相邻的背景子块来对它做出正确的分类。

5 后处理

经过特征提取和特征分类两个模块后,我们得到了对图像子块的分类结果,但最后我们期望得到的是对二维条形码的包围盒。在我们的设置下,自适应Spatialboost
分类器对背景子块的分类相当严格,此时对属于二维条形码的图像子块会有部分漏检发生,

在这里插入图片描述

因此在后处理模块中,我们先使用一种自适应聚类算法,对分类后的结果进一步改进,来精确的覆盖整个二维条形码。特征分类后定位到的子块的大小为
25×25,我们把这些子块再划分为 10×10 的小方块。接着以得到的 10×10 的子块为种子,用子块灰度值的方差为衡量标准往外聚类,聚类时的阈值设定为:

在这里插入图片描述

其中 M 是聚类开始时作为种子的子块的个数,k 为调整系数,在本文算法中 k设置为 0.5,Var 和 Mean
分别表示子块灰度值的均值和方差。由公式(3-1)可知,每幅图像的聚类阈值是自适应的计算得来的。聚类开始时首先从种子子块出发,计算它们周围的子块的灰度值方差,如果大于聚类阈值就把它标识为属于二维条形码,重复这个过程直到周围再没有子块符合聚类条件。图
3-5
是聚类算法的部分结果,第一行的图像是特征分类后的结果,准确的定位到了一部分二维条形码,但是没有完全的覆盖整个二维条形码,不利于我们输出最后的定位包围盒。第二行为聚类后的结果,可以看到小块几乎完全覆盖了整个二维条形码,此时再把这些小块合并为一个平行四边形就很方便了。

在这里插入图片描述

聚类后定位出来的小块基本上覆盖了整个二维条形码,最后我们只需要把定位出的小包围盒合并为大包围盒,并输出最后的定位结果。整个后处理流程见图

在这里插入图片描述

6 代码实现

这里演示条形码的检测效果:
在这里插入图片描述

关键部分代码实现:


# import the necessary packages
import numpy as np
import argparse
import cv2

# construct the argument parse and parse the arguments
# ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--image", required = True, help = "path to the image file")
# args = vars(ap.parse_args())# load the image and convert it to grayscale
image = cv2.imread('./images/2.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# compute the Scharr gradient magnitude representation of the images
# in both the x and y direction
gradX = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 1, dy = 0, ksize = -1)
gradY = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 0, dy = 1, ksize = -1)# subtract the y-gradient from the x-gradient
gradient = cv2.subtract(gradX, gradY)
gradient = cv2.convertScaleAbs(gradient)# blur and threshold the image
blurred = cv2.blur(gradient, (9, 9))
(_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)# construct a closing kernel and apply it to the thresholded image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)# perform a series of erosions and dilations
closed = cv2.erode(closed, None, iterations = 4)
closed = cv2.dilate(closed, None, iterations = 4)# find the contours in the thresholded image, then sort the contours
# by their area, keeping only the largest one
(cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]# compute the rotated bounding box of the largest contour
rect = cv2.minAreaRect(c)
box = np.int0(cv2.boxPoints(rect))

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/78326.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据分析三剑客之Pandas

1.引入 前面一篇文章我们介绍了numpy,但numpy的特长并不是在于数据处理,而是在它能非常方便地实现科学计算,所以我们日常对数据进行处理时用的numpy情况并不是很多,我们需要处理的数据一般都是带有列标签和index索引的&#xff0…

uni-app:单页面的页面切换

效果 代码 <template><view><view class"tab-bar"><text class"tab" :class"{ active: activeTab 0 }" click"changeTab(0)">页面1</text><text class"tab" :class"{ active: acti…

解锁网页开发的力量:深入探讨 JavaScript 编程

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 JavaScript 是现代网页开…

SpringBoot 整合 Websocket 通信demo (附浏览器聊天窗口)

1. 依赖 <!-- SpringBoot WebSocket --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency>2. 自动注册配置类 import org.springframework.context…

巨人互动|Google海外户Google排名算法机制

谷歌是目前最流行的搜索引擎之一&#xff0c;它的排名算法机制是谷歌搜索引擎的核心。谷歌的排名算法机制可以分为两个部分&#xff1a;计算网页相关度和排序结果。 一、计算网页相关度 谷歌通过计算每个页面的相关度来确定搜索结果的优先级。相关度是根据页面上的关键词、图…

【Java从入门到精通】这也许就是Java火热的原因吧!

前言&#xff1a;Java是一种高级的、面向对象的、可跨平台的程序设计语言。Java根据技术类别可划分为以下几类&#xff1a;JavaSE&#xff08;Standard Edition&#xff0c;标准版&#xff09;&#xff1a;支持面向桌面、嵌入式和移动设备的应用程序开发&#xff1b;JavaEE&…

input子系统框架、外设驱动开发

一、input子系统基本框架 Linux内核为了两个目的&#xff1a; 简化纯输入类外设&#xff08;如&#xff1a;键盘、鼠标、游戏杆、轨迹球、触摸屏。。。等等&#xff09;的驱动开发统一输入类外设产生的数据格式&#xff08;struct input_event&#xff09;&#xff0c;更加方…

功率放大器的作用有哪些

功率放大器是电子设备中常见的一个组件&#xff0c;其作用是将输入信号的能量放大到更高的功率级别&#xff0c;以用于驱动高功率负载或者提供足够的功率来满足特定需求。功率放大器在各种应用领域中发挥着重要作用&#xff0c;下面将详细介绍功率放大器的作用与应用。 图&…

亚信科技AntDB数据库携“U8C+AntDB联合产品”亮相“2023全球商业创新大会”,开启生态合作新篇章

8月18-19日&#xff0c;近万人齐聚上海国家会展中心&#xff0c;带着对数字化、数智化趋势和热点的关注&#xff0c;以满腹热情投身到以“数据驱动 智能运营”为主题的“2023全球商业创新大会”&#xff0c;共商新技术条件下企业信息化出现的新课题、新挑战&#xff0c;共享数智…

Linux配置成代理服务器

Linux配置成代理服务器 什么是代理服务器 把Linux配置成代理服务器 开放的代理服务器 升级需要账号密码的代理服务器 Linux系统使用代理服务器 临时通过代理访问 永久通过代理访问 Windows系统使用代理服务器 什么是代理服务器 代理服务器&#xff08;Proxy Server&am…

【LeetCode-中等题】 454. 四数相加 II

文章目录 题目方法一&#xff1a;哈希表 题目 方法一&#xff1a;哈希表 哈希表记录前两个数组的和以及出现次数&#xff0c;然后记录后面两个数组的和&#xff0c;成功将四数之和转换为两数之和 因为本题特殊在和是为0 的 所以后面的两个数组之和取反 如果能在map的key中存在…

SpringMVC系列(六)之JSON数据返回以及异常处理机制

目录 前言 一. JSON概述 二. JSON数据返回 1. 导入pom依赖 2. 添加配置文件&#xff08;spring-mvc.xml&#xff09; 3. ResponseBody注解使用 4. 效果展示 5. Jackson介绍 三. 全局异常处理 1. 为什么要全局异常处理 2. 异常处理思路 3. 异常处理方式一 4. 异常处…

windows下安装redis扩展库

1.根据PHP版本号&#xff0c;编译器版本号和CPU架构 选择php_redis和php_igbinary文件(如果是选择线程的情况下需要再去配置php5ts.dll) windows.php.net - /downloads/pecl/releases/redis/ windows.php.net - /downloads/pecl/releases/igbinary/ php_igbinary-3.1.2-7.2-…

02_Flutter自定义Sliver组件实现分组列表吸顶效果

02_Flutter自定义Sliver组件实现分组列表吸顶效果 一.先上效果图 二.列表布局实现 比较简单&#xff0c;直接上代码&#xff0c;主要使用CustomScrollView和SliverToBoxAdapter实现 _buildSection(String title) {return SliverToBoxAdapter(child: RepaintBoundary(child: C…

Java 并发编程面试题——Fork/Join 框架

目录 1.什么是 Fork/Join 框架&#xff1f;2.什么是工作窃取算法&#xff1f;它有什么作用&#xff1f;有什么优缺点&#xff1f;3.如何设计一个 Fork/Join 框架&#xff1f;4.如何使用 Fork/Join 框架&#xff1f;5.Fork/Join 框架的实现原理是什么&#xff1f;5.1.ForkJoinTa…

论文笔记:一分类及其在大数据中的潜在应用综述

0 概述 论文&#xff1a;A literature review on one‑class classification and its potential applications in big data 发表&#xff1a;Journal of Big Data 在严重不平衡的数据集中&#xff0c;使用传统的二分类或多分类通常会导致对具有大量实例的类的偏见。在这种情况…

CentOS 8 通过YUM方式升级最新内核

CentOS 8 通过YUM方式升级最新内核 查看当前内核 uname -r 4.18.0-193.6.3.el8_2.x86_64导入 ELRepo 仓库的公钥&#xff1a; rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org安装升级内核相关的yum源仓库(安装 ELRepo 仓库的 yum 源) yum install https://www…

远程连接PostgreSQL:配置指南与安全建议

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f405;&#x1f43e;猫头虎建议程序员必备技术栈一览表&#x1f4d6;&#xff1a; &#x1f6e0;️ 全栈技术 Full Stack: &#x1f4da…

use vscode mingw cmake on windows

记住mingw去官网下面的MingW-W64-builds, 下这个版本 x86_64-13.1.0-release-posix-seh-ucrt-rt_v11-rev1.7z posix很重要, win32版本没线程支持,用到会报错 可以测试下是否能正常运行 #include <thread> #include <mutex> #include <condition_variable> …

MFC-GetAdaptersAddresses获取网卡信息

需要:#pragma comment(lib, "IPHLPAPI.lib") GetAdaptersAddresses函数参数说明 ULONG bufferSize = 0;ULONG result = ::GetAdaptersAddresses(AF_UNSPEC, GAA_FLAG_INCLUDE_PREFIX, nullptr, nullptr, &bufferSize);/*参数1:ULONG Family 网络协议族,此参…