建立动态MGRE隧道的配置方法

目录

一、实验拓扑

1.1通用配置

1.1.1地址配置

 1.1.2静态缺省指向R5,实现公网互通

1.1.3MGRE协议配置

 1.1.4配置静态

二、Shortcut方式

三、Normal方式(非shortcut)

四、总结


一、实验拓扑

下面两种配置方法皆使用静态方式

1.1通用配置

1.1.1地址配置

[R1]int g0/0/0
[R1-GigabitEthernet0/0/0]ip add 15.0.0.1 24
[R1-GigabitEthernet0/0/0]int l0
[R1-LoopBack0]ip add 192.168.1.1 24[R2]int g0/0/0
[R2-GigabitEthernet0/0/0]ip add 25.0.0.1 24
[R2-GigabitEthernet0/0/0]int l0
[R2-LoopBack0]ip add 192.168.2.1 24[R3]int g0/0/0
[R3-GigabitEthernet0/0/0]ip add 35.0.0.1 24
[R3-GigabitEthernet0/0/0]int l0
[R3-LoopBack0]ip add 192.168.3.1 24[R4]int g0/0/0
[R4-GigabitEthernet0/0/0]ip add 45.0.0.1 24
[R4-GigabitEthernet0/0/0]int l0
[R4-LoopBack0]ip add 192.168.4.1 24[ISP]int g0/0/0
[ISP-GigabitEthernet0/0/0]ip add 15.0.0.2 24
[ISP-GigabitEthernet0/0/0]int g0/0/1
[ISP-GigabitEthernet0/0/1]ip add 25.0.0.2 24
[ISP-GigabitEthernet0/0/1]int g0/0/2
[ISP-GigabitEthernet0/0/2]ip add 5.0.0.2 243
[ISP-GigabitEthernet0/0/2]int g4/0/0
[ISP-GigabitEthernet4/0/0]ip add 45.0.0.2 24
[ISP-GigabitEthernet4/0/0]int l0
[ISP-LoopBack0]ip add 5.5.5.5 24

 1.1.2静态缺省指向R5,实现公网互通

[R1]ip route-static 0.0.0.0 0 15.0.0.2[R2]ip route-static 0.0.0.0 0 25.0.0.2[R3]ip route-static 0.0.0.0 0 35.0.0.2[R4]ip route-static 0.0.0.0 0 45.0.0.2

 测试,实现公网的互通

1.1.3MGRE协议配置

[R1]int t0/0/0
[R1-Tunnel0/0/0]ip add 192.168.5.1 24
[R1-Tunnel0/0/0]tunnel-protocol gre p2mp  修改接口的封装协议为MGRE
[R1-Tunnel0/0/0]source 15.0.0.1[R2]int t0/0/0
[R2-Tunnel0/0/0]ip add 192.168.5.2 24
[R2-Tunnel0/0/0]tunnel-protocol gre p2mp
[R2-Tunnel0/0/0]nhrp entry 192.168.5.1 15.0.0.1 register 第一个IP为隧道地址,第二个为物理地址1、告知本端,hub节点的隧道IP与物理IP的对应关系;2、向hub节点注册本地的隧道IP与物理IP的对应关系;
[R2-Tunnel0/0/0]source g0/0/0   规定封装源为GE0/0/0接口的IP地址[R3]int t0/0/0
[R3-Tunnel0/0/0]ip ad 192.168.5.3 24
[R3-Tunnel0/0/0]tunnel-protocol gre p2mp
[R3-Tunnel0/0/0]nhrp entry 192.168.5.1 15.0.0.1 register 
[R3-Tunnel0/0/0]source g0/0/0[R4]int t0/0/0
[R4-Tunnel0/0/0]ip add 192.168.5.4 24
[R4-Tunnel0/0/0]tunnel-protocol gre p2mp
[R4-Tunnel0/0/0]nhrp entry 192.168.5.1 15.0.0.1 register 
[R4-Tunnel0/0/0]source g0/0/0

 1.1.4配置静态

[R1]ip route-static 192.168.2.0 24 192.168.5.2
[R1]ip route-static 192.168.3.0 24 192.168.5.3
[R1]ip route-static 192.168.4.0 24 192.168.5.4

二、Shortcut方式

[R2]undo ip route-static 192.168.4.0 24 192.168.5.4
[R2]undo ip route-static 192.168.3.0 24 192.168.5.3
[R2]ip route-static 192.168.4.0 24 192.168.5.1
[R2]ip route-static 192.168.3.0 24 192.168.5.1[R3]undo ip route-static 192.168.4.0 24 192.168.5.4
[R3]undo ip route-static 192.168.2.0 24 192.168.5.2
[R3]ip route-static 192.168.4.0 24 192.168.5.1
[R3]ip route-static 192.168.2.0 24 192.168.5.1[R4]undo ip route-static 192.168.3.0 24 192.168.5.3
[R4]undo ip route-static 192.168.2.0 24 192.168.5.2
[R4]ip route-static 192.168.3.0 24 192.168.5.1
[R4]ip route-static 192.168.2.0 24 192.168.5.1

 在R1上开启重定向

[R1]int t0/0/0
[R1-Tunnel0/0/0]nhrp redirect[R2]int t0/0/0
[R2-Tunnel0/0/0]nhrp shortcut 
在spoke节点配置,使能shortcut功能,未开启该功能,则代表分支站点无法响应重定向报文。[R4]int t0/0/0
[R4-Tunnel0/0/0]nhrp shortcut 

三、Normal方式(非shortcut)

[R2]ip route-static 192.168.4.0 24 192.168.5.4
[R2]ip route-static 192.168.3.0 24 192.168.5.3
[R2]ip route-static 192.168.1.0 24 192.168.5.1[R3]ip route-static 192.168.4.0 24 192.168.5.4
[R3]ip route-static 192.168.2.0 24 192.168.5.2
[R3]ip route-static 192.168.1.0 24 192.168.5.1[R4]ip route-static 192.168.3.0 24 192.168.5.3
[R4]ip route-static 192.168.2.0 24 192.168.5.2
[R4]ip route-static 192.168.1.0 24 192.168.5.1

四、总结

  • shortcut方式:分支路由汇聚到总部,每一个分支编写的路由信息的下一跳均为hub节点
  • 非shortcut方式:非便捷方式,分支之间相互学习路由。下一跳分别是分支的隧道IP地址。而非hub节点

1、配置上:

  • shortcut方式,针对静态路由,走向的下一跳都是去Hub站点。且为了使得选路优化,需要在Hub上进行重定向操作,在spoke节点上开启快捷方式
  • 非shortcut方式,针对静态路由,走向的 下一跳是去对应网段的隧道地址的下一跳,Hub和Spoke无需过多操作

2、原理上:shortcut方式比非shortcut方式多了一个重定向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/782283.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Sentinel原理及实践

Sentinel 是什么 Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。 为什么使用sentinel&…

文件的顺序读写——顺序读写函数——fgets、fgetc、fputs、 fputc

✨✨ 欢迎大家来到莉莉的博文✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 目录 一、fgetc和fputc函数 1.1 fputc 1.2 fgetc 二、fputs和fgets函数 2.1 fputs函数 2.2 fgets函数 一、fgetc和fputc函数 1.1 fputc 返回类…

基于单片机自行车码表系统设计

**单片机设计介绍,基于单片机自行车码表系统设计 文章目录 一 概要二、功能设计三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机自行车码表系统设计主要涵盖了硬件设计、软件设计以及功能实现等多个方面。以下是对该设计概要的详细描述&#xff1a…

计算机网络——31数据链路层和局域网引论和服务

数据链路层和局域网 WAN:网络形式采用点到点链路 带宽大,距离远(延迟大) 贷款延迟积大 如果采用多点连接方式 竞争方式:一旦冲突代价大令牌等协调方式:在其中协调节点的发送代价大 点到点链路的链路层服…

每日面经分享(Spring Boot: part3 Service层)

SpringBoot Service层的作用 a. 封装业务逻辑:Service层负责封装应用程序的业务逻辑。Service层是控制器(Controller)和数据访问对象(DAO)之间的中间层,负责处理业务规则和业务流程。通过将业务逻辑封装在S…

设计模式(9):外观模式

一.迪米特法则(最少知识原则) 一个软件实体应当尽可能少的与其他实体发生相互作用。 二.外观模式 为子系统提供统一的入口,封装子系统的复杂性,便于客户端调用。它的核心是什么呢,就是为我们的子系统提供一个统一的入口,封装子…

newOJ-1093: 分香蕉

目录 题目链接: 思路: 坑一: 坑二: 坑三: 代码: 通过10%: 通过80%: 通过100%: 题目链接: P1093 - 分香蕉 - New Online Judge (ecustacm.cn) 思路&a…

RVM安装Ruby笔记(Mac)

环境 硬件:Macbook Pro 系统:macOS 14.1 安装公钥 通过gpg安装公钥失败,报错如下: 换了几个公钥地址(hkp://subkeys.pgp.net,hkp://keys.gnupg.net,hkp://pgp.mit.edu),…

使用Flink实现MySQL到Kafka的数据流转换

使用Flink实现MySQL到Kafka的数据流转换 本篇博客将介绍如何使用Flink将数据从MySQL数据库实时传输到Kafka,这是一个常见的用例,适用于需要实时数据connector的场景。 环境准备 在开始之前,确保你的环境中已经安装了以下软件:…

ML-Decoder: Scalable and Versatile Classification Head

1、引言 论文链接:https://openaccess.thecvf.com/content/WACV2023/papers/Ridnik_ML-Decoder_Scalable_and_Versatile_Classification_Head_WACV_2023_paper.pdf 因为 transformer 解码器分类头[1] 在少类别多标签分类数据集上表现得很好,但由于其查询…

PHP的定时任务框架的taskPHP3.0学习记录2(环境要求、配置Redis、crontab执行时间语法、命令操作以及Screen全屏窗口管理器)

环境要求 php版本> 5.5开启socket扩展开启pdo扩展开启shmop扩展 echo <pre>; echo --; $requiredVersion 5.6.0; $currentVersion phpversion(); if (version_compare($currentVersion, $requiredVersion, >)) {echo "1.PHP版本满足要求&#xff0c;当前版…

c语言:vs2022写一个一元二次方程(包含虚根)

求一元二次方程 的根&#xff0c;通过键盘输入a、b、c&#xff0c;根据△的值输出对应x1和x2的值(保留一位小数)(用if语句完成)。 //一元二次方程的实现 #include <stdio.h> #include <math.h> #include <stdlib.h> int main() {double a, b, c, delta, x1…

数据结构 - 算法效率|时间复杂度|空间复杂度

目录 1.算法效率 2.时间复杂度 2.1定义 2.2大O渐近表示法 2.3常见时间复杂度计算举例 3.空间复杂度 3.1定义 3.2常见空间复杂度计算举例 1.算法效率 算法的效率常用算法复杂度来衡量&#xff0c;算法复杂度描述了算法在输入数据规模变化时&#xff0c;其运行时间和空间…

opejdk11 java 启动流程 java main方法怎么被jvm执行

java启动过程 java main方法怎么被jvm执行 java main方法是怎么被jvm调用的 1、jvm main入口 2、执行JLI_Launch方法 3、执行JVMInit方法 4、执行ContinueInNewThread方法 5、执行CallJavaMainInNewThread方法 6、创建线程执行ThreadJavaMain方法 7、执行ThreadJavaMain方法…

Last-Modified:HTTP缓存控制机制解析

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

docker配置github仓库ghcr国内镜像加速

文章目录 说明ghcr.io简介配置镜像命令地址命令行方式1panel面板方式方式一&#xff1a;配置镜像加速&#xff0c;命令行拉取方式二&#xff1a;配置镜像仓库&#xff0c;可视化拉取 说明 由于使用的容器需要从github下载镜像&#xff0c;服务器在国外下载速度很慢&#xff0c…

26. UE5 RPG同步面板属性(二)

在上一篇&#xff0c;我们解析了UI属性面板的实现步骤&#xff1a; 首先我们需要通过c去实现创建GameplayTag&#xff0c;这样可以在c和UE里同时获取到Tag创建一个DataAsset类&#xff0c;用于设置tag对应的属性和显示内容创建AttributeMenuWidgetController实现对应逻辑 并且…

理解游戏服务器架构-部署架构

目录 前言 我所理解的服务器架构 什么是否部署架构 部署架构的职责 进程业务职责 网络链接及通讯方式 与客户端的连接方式 服务器之间连接关系 数据落地以及一致性 数据库的选择 数据访问三级缓存 数据分片 读写分离 分布式数据处理 负载均衡 热更新 配置更新 …

html第二次作业

骨架 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-width, initi…

vscode初始化node项目

首先需要安装node环境&#xff0c;推荐直接使用nvm 安装node&#xff0c;方便切换node版本 1.npm init 初始化node项目 在命令行输入npm init指令 根据指令创建完成后会在当前目录下生成一个package.json文件&#xff0c;记住运行npm init执行的目录必须是一个空目录 2.创建…