数据结构基础7:二叉树【链式结构】实现和递归思想。

二叉树的链式结构实现

  • 一.二叉树链式结构的实现:
    • 1.前置说明:
      • 1.创建二叉树:
      • 2.二叉树的结构:
    • 2.二叉树的遍历:
      • 1.二叉树的前中后序遍历:
      • 2.内容拓展:
  • 二.二叉树链式(题目)
    • 题目一:计算节点的个数:
      • 方法一:注意事项:
      • 方法二:注意事项:
    • 题目二:计算叶子节点的个数:
      • 方法一:
    • 题目三:求第K层节点的个数:
      • 方法一:
    • 题目四:
      • 方法一:重新定义一个函数:
      • 方法二:(判断左右节点数值和root数值)
    • 题目五:二叉树的最大深度:
      • 方法一:

一.二叉树链式结构的实现:

1.前置说明:

对于一颗二叉树的构建是比较复杂的在刚刚开始了解二叉树的构建的时候。我们可以通过创建多个节点的方式去构建二叉树的结构,直接连接节点的左右节点构建一个二叉树方便去学习。

1.创建二叉树:

struct TreeNode* byNode(TreeNodeData x)
{struct TreeNode* tmp = (struct TreeNode*)malloc(sizeof(struct TreeNode));if (tmp == NULL){perror(tmp);exit(-1);}tmp->val = x;tmp->left = NULL;tmp->right = NULL;return tmp;
}void creatTreeNode()
{//1.构建二叉树:struct TreeNode* n1 = byNode(1);struct TreeNode* n2 = byNode(2);struct TreeNode* n3 = byNode(3);struct TreeNode* n4 = byNode(4);struct TreeNode* n5 = byNode(5);struct TreeNode* n6 = byNode(6);struct TreeNode* n7 = byNode(7);n1->left = n2;n1->right = n3;n2->left = n4;n2->right = n5;n3->left = n6;n3->right = n7;}
int main()
{//1.构建二叉树:creatTreeNode();
}

2.二叉树的结构:

1.需要注意的是上面的代码不是创建二叉树的一个正规方法,后面我的博客是会去涉及到二叉树的一个创建:
1.空树:
2.非空树:
从二叉树的概念可知二叉树是递归构建的所以后面的操作都是基于递归构建的内容。

2.二叉树的遍历:

1.二叉树的前中后序遍历:

1.学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

2.前中后序遍历递归结构遍历:

  1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

前序遍历:
请添加图片描述

//1.前序
void PreOrder(struct TreeNode* root)
{//1.返回条件:if (root == NULL){printf("NULL ");return ;}//2.进入递归://先printf("%d ", root->val);//左PreOrder(root->left);//右PreOrder(root->right);
}

中序遍历:

//2.中序
void InOrder(struct TreeNode* root)
{//1.返回条件:if (root == NULL){printf("NULL ");return;}//2.进入递归://左PreOrder(root->left);//根:printf("%d ", root->val);//右PreOrder(root->right);
}

后序遍历:

//3.后序
void PostOrder(struct TreeNode* root)
{//1.返回条件:if (root == NULL){printf("NULL ");return;}//2.进入递归://左PreOrder(root->left);//右PreOrder(root->right);//根:printf("%d ", root->val);
}

2.内容拓展:

一.普通二叉树:
1.增删查改是没有意义的:内容上的增删查改对二叉树的结构造成破坏:

二.二叉搜索树(链式结构):
1.AVL树:
2.红黑树:
3.二叉树的oj题目:

请添加图片描述

二.二叉树链式(题目)

题目一:计算节点的个数:

方法一:注意事项:

1.创建在函数里面创建静态局部变量进入递归函数这个变量不会再一次创建:
2.注意root到空的时候的返回值为0:
3.注意不要去创建多个树如果存在多个树去计算节点会导致静态变量数值的问题:

//题目一:计算节点个数://方法一(使用局部静态):
int TreeSize(TN* root)
{//1.返回条件:if (root == NULL){return 0;}//只会在第一次进入函数去定义:static int num = 0;//2.进入递归://1.当前节点:num++;//2.左:TreeSize(root->left);//3.右:TreeSize(root->right);return num;
}

方法二:注意事项:

1.使用分治的思路去每次加上一个当前节点的个数。
2.当节点为空的时候就返回一个0.
3.注意:这个函数可以同时去计算多个树的节点个数:

//方法二(使用分治的思路):
int TreeSize2(TN* root)
{if (root == NULL)return 0;//左节点+右节点return TreeSize2(root->left) + TreeSize2(root->right) + 1;
}

题目二:计算叶子节点的个数:

方法一:

1,叶子节点是没有左子树没有右子树的就是叶子节点:
2.遍历每一个节点,并且判断节点是否是叶子节点:
3.使用分治的思路去计数:

int TreeLeafSize(TN* root)
{//1.只有叶子才返回:if (root->left == NULL && root->right==NULL){return 1;}//2.进入左右子树递归:return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

题目三:求第K层节点的个数:

方法一:

1.函数需要传参数K
2.找根节点的K层就相当于找根节点左子树根的第K-1层:
3.找根节点的K层就相当于找根节点右子树根的第K-1层:
4.进入函数不要多次的进行–,k–不要写在函数中:下一次进入右树的时候就不需要再一次的–了!

//题目三:计算第K层节点个数://方法一:int TreeKSize(TN* root, int k)
{assert(k!=0);//1.如果在k层没有到的情况下到空返回0if (root == NULL){return 0;}//2.当到达K层的时候。if (k == 1){return 1;}//3.没有到达K层并且没有为空的时候就进入递归://3-1:进入不同的栈中只要是同层的就可以保证K值相同:k--;return TreeKSize(root->left, k)+TreeKSize(root->right,k);
}

题目四:

请添加图片描述
题目链接:单值二叉树

方法一:重新定义一个函数:

1.我们前面大部分的操作就是root为空就返回(true)(因为我们是比较数值是否相同所有返回true):
2…如果每一次通过root的数值去判断我们是需要传数值到递归的下一个部分:
3.如果左子树有不相等的就直接返回false(就不需要进入右子树判断):
4.如果左右相等的就继续函数不需要返回(继续进入函数)。

bool isUnivalTreeNode(struct TreeNode* root,int val)
{//1.到空树:if(root==NULL){return true;}//2.数值相同:if(root->val==val){}else if(root->val!=val){return false;}//左子树:if(isUnivalTreeNode(root->left,root->val)){//右子树:return isUnivalTreeNode(root->right,root->val);}return false;
}bool isUnivalTree(struct TreeNode* root){//左子树:if(isUnivalTreeNode(root->left,root->val)){//右子树:return isUnivalTreeNode(root->right,root->val);}return false;
}

方法二:(判断左右节点数值和root数值)

1.如果根为空就返回真:
2.如果左右子树的根节点数值和当前root的数值相同就继续递归进入。
3.如果左右子树中有一个节点数值和root的数值不相同就返回

bool isUnivalTree(struct TreeNode* root){if(root==NULL)return true;//1.这两个思路可以解决一个为空,一个有的情况。//2.解决两个都为空的情况。//3.解决两个都不是空的情况。if(root->left!=NULL && root->left->val != root->val){return false;}if(root->right!=NULL && root->right->val != root->val){return false;}//进入递归:return isUnivalTree(root->left) && isUnivalTree(root->right);
}

题目五:二叉树的最大深度:

方法一:

请添加图片描述

二叉树的深度

1.如果到空就返回0,空不是节点数。
2.每一次比较左右的数的值拿出较大的数值进行+1这个+1就相当加上当前节点。
3.子树的根节点不是空就继续。

int maxDepth(struct TreeNode* root){//1.左为空返回0(空节点不是节点数是一个返回的标志)。//2.右子树不是空就继续进入函数。if(root==NULL)return 0;//2.比较左右子树的返回值取较大的数值:int max=maxDepth(root->left);int max1=maxDepth(root->right); if(max1>max){max=max1;}//在回去的过程中自己也是节点return max+1;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/77998.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Axure高保真原型】日历日期原型模板

今天和大家分享日历日期的原型模板,包括月计划、周计划、日计划的原型案例,以及日期、时间、月份、区间选择器……具体效果可以点击下方视频观看 【原型预览及下载地址】 Axure 原型 备用地址:Untitled Document 【原型效果】 【原型效果…

2.k8s账号密码登录设置

文章目录 前言一、启动脚本二、配置账号密码登录2.1.在hadoop1,也就是集群主节点2.2.在master的apiserver启动文件添加一行配置2.3 绑定admin2.4 修改recommended.yaml2.5 重启dashboard2.6 登录dashboard 总结 前言 前面已经搭建好了k8s集群,现在设置下…

保姆级教程 --redis启动命令

1、在redis目录 打开命令 windowr 输入cmd 2、输入 redis-server.exe redis.windows.conf 启动redis命令,看是否成功 3、可能会启动失败,报28 Nov 09:30:50.919 # Creating Server TCP listening socket 127.0.0.1:6379: bind: No error 4、报错后&am…

【AI】《动手学-深度学习-PyTorch版》笔记(二十二):单发多框检测(SSD)

AI学习目录汇总 1、介绍 SSD(Single Shot MultiBox Detector)单发多框检测。“Single shot”说明SSD算法属于one-stage(一段式)方法,“MultiBox”说明SSD是多框预测(多尺度锚框/特征图)。 SSD和YOLO一样都是采用CNN网络执行one-stage(一段式)检测,区别是: YOLO速…

3D异常检测论文笔记 | Shape-Guided Dual-Memory Learning for 3D Anomaly Detection

参考:https://paperswithcode.com/sota/3d-anomaly-detection-and-segmentation-on 论文:https://openreview.net/pdf?idIkSGn9fcPz code:https://github.com/jayliu0313/Shape-Guided 文章目录 摘要一、介绍三、方法3.1. 形状引导专家学习3…

Linux下systemd深入指南:如何优化Java服务管理与开机自启配置

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(二)

文章目录 TASK系列解析文章OptimizeByNLP1.get_nlp_info()定义问题规模2.get_bounds_info()定义约束边界约束3.get_starting_point()定义初值4.eval_f()求解目标函数5.eval_grad_f()求解梯度6.eval_g()求解约束函数7.eval_jac_g()求解约束雅可比矩阵8.eval_h()求解黑塞矩阵9. f…

碎片笔记 | 大模型攻防简报

前言:与传统的AI攻防(后门攻击、对抗样本、投毒攻击等)不同,如今的大模型攻防涉及以下多个方面的内容: 目录 一、大模型的可信问题1.1 虚假内容生成1.2 隐私泄露 二、大模型的模型安全问题(传统AI攻防&…

交叉编译poco-1.9.2

目录 一、文件下载二、编译三、可能遇到的问题和解决方法3.1 error "Unknown Hardware Architecture."3.2 error Target architecture was not detected as supported by Double-Conversion一、文件下载 下载地址:poco-1.9.2 二、编译 解压目录后打开build/config/…

Mybatis-Genertor逆向工程

1、导入mybaties插件 <build><plugins><plugin><groupId>org.mybatis.generator</groupId><artifactId>mybatis-generator-maven-plugin</artifactId><version>1.4.2</version><dependencies><dependency>…

亲手实现:全方位解析SpringCloud Alibaba,这份全彩笔记送给你

SpringCloud Aliababa简介 大家好&#xff0c;这次我们来分享一个实用的开源项目—SpringCloud Alibaba。 SpringCloud是国内外微服务开发的首选框架&#xff0c;而SpringCloud Alibaba则是阿里巴巴为微服务架构而开发的组件&#xff0c;它支持SpringCloud原生组件&#xff0…

并联电容器交流耐压试验方法

对被试并联电容器两极进行充分放电。 检查电容器外观、 污秽等情况, 判断电容器是否满足试验要求状态。 用端接线将并联电容器两极短接连接湖北众拓高试工频耐压装置高压端, 外壳接地。 接线完成后经检查确认无误, 人员退出试验范围。 接入符合测试设备的工作电源&#xff0c;…

PHP8中获取并删除数组中第一个元素-PHP8知识详解

我在上一节关于数组的教程&#xff0c;讲的是在php8中获取并删除数组中最后一个元素&#xff0c;今天分享的是相反的&#xff1a;PHP8中获取并删除数组中第一个元素。 回顾一下昨天的知识&#xff0c;array_pop()函数将返回数组的最后一个元素&#xff0c;今天学习的是使用arr…

STM32--蓝牙

本文主要介绍基于STM32F103C8T6和蓝牙模块实现的交互控制 简介 蓝牙&#xff08;Bluetooth&#xff09;是一种用于无线通信的技术标准&#xff0c;允许设备在短距离内进行数据交换和通信。它是由爱立信&#xff08;Ericsson&#xff09;公司在1994年推出的&#xff0c;以取代…

软件架构之前后端分离架构服务器端高并发演进之路

软件架构之前后端分离架构&服务器端高并发演进之路 前后端分离架构从业务角度从质量属性从性能角度 服务器端关于不同并发量的演进之路1. 单体架构2. 第一次演进&#xff1a;应用服务器和数据库服务器分开部署3. 第二次演进&#xff1a;引入本地缓存和分部署缓存4. 第三次演…

Dajngo06_Template模板

Dajngo06_Template模板 6.1 Template模板概述 模板引擎是一种可以让开发者把服务端数据填充到html网页中完成渲染效果的技术 静态网页&#xff1a;页面上的数据都是写死的&#xff0c;万年不变 动态网页&#xff1a;页面上的数据是从后端动态获取的&#xff08;后端获取数据库…

车载网络扫盲

目录 车载以太网发展技术 车载网络通信架构与拓扑 车载网络的车载网关 车载网络通信协议 二层确定性以太网协议 二层车载网络扩展协议 三层安全加密协议 四层应用通信协议 车载网络通信架构的网络安全 车载以太网发展技术 车载网络技术包括车载影音娱乐和车载导航需要的MOST&am…

Java多线程篇(1)——深入分析synchronized

文章目录 synchronized原理概述锁升级 初始状态偏向锁偏向锁获取/重入偏向锁的撤销/重偏向和升级批量重偏向和批量偏向撤销偏向锁的释放 轻量级锁轻量级锁获取/重入轻量级锁膨胀轻量级锁释放 重量级锁重量级锁获取/重入重量级锁释放重量级锁的降级 其他锁粗化、锁消除调用hashc…

IDEA(2023)修改默认缓存目录

&#x1f607;作者介绍&#xff1a;一个有梦想、有理想、有目标的&#xff0c;且渴望能够学有所成的追梦人。 &#x1f386;学习格言&#xff1a;不读书的人,思想就会停止。——狄德罗 ⛪️个人主页&#xff1a;进入博主主页 &#x1f5fc;专栏系列&#xff1a;无 &#x1f33c…

OSCP系列靶场-Esay-Vegeta1保姆级

OSCP系列靶场-Esay-Vegeta1保姆级 目录 OSCP系列靶场-Esay-Vegeta1保姆级总结准备工作信息收集-端口扫描目标开放端口收集目标端口对应服务探测 信息收集-端口测试22-SSH端口的信息收集22-SSH端口版本信息与MSF利用22-SSH协议支持的登录方式22-SSH手动登录尝试(无)22-SSH弱口令…