【八大排序】一篇文章搞定所有排序

文章目录

  • 1.排序的概念
  • 2.常见排序算法的实现
  • 2.1 插入排序
    • 2.1.1直接插入排序
    • 2.1.2希尔排序
  • 2.2选择排序
    • 2.2.1直接选择排序:
    • 2.2.2堆排序
  • 2.3交换排序
    • 2.3.1冒泡排序
    • 2.3.2快速排序
      • Hoare法
      • 前后指针法
      • 挖坑法
      • 非递归版本
  • 2.4归并排序
      • 递归版本
      • 非递归版本
  • 2.5计数排序
  • 3.排序的比较

在这里插入图片描述

1.排序的概念

1.1排序的概念

  • 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
  • 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
  • 内部排序:数据元素全部放在内存中的排序
  • 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

2.常见排序算法的实现

2.1 插入排序

直接插入排序是一种简单的插入排序法,其基本思想是:把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。

2.1.1直接插入排序

在这里插入图片描述
当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移。

void InsertSort(int* a, int n)
{for (int i = 0; i < n - 1; i++){int end = i;int tmp = a[end + 1];//待排序数据while (end >= 0){if (tmp < a[end])//将待排序数据前的数据依次与其比较{a[end + 1] = a[end];//数据后移end--;}else{break;}}a[end + 1] = tmp;//将待排序数据放在合适位置}
}

直接插入排序的特性总结:

  1. 元素集合越接近有序,直接插入排序算法的时间效率越高
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:稳定

2.1.2希尔排序

  • 希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数作为gap,把待排序数据分成gap组,所有距离为gap的数据分在同一组内,并对每一组内的记录进行排序。然后重新取gap,重复上述分组和排序的工作。当到达gap==1时,所有记录在统一组已内排好序。

  • 希尔排序是对直接插入排序的优化。
    当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,在使用直接插入排序,这样就会很快。这样整体而言,可以达到优化的效果。

  • 在初始时,gap通常选择 n/2 或 n/3+1(n为数据的个数)

在这里插入图片描述
在这里插入图片描述

void ShellSort(int* a, int n)
{int gap = n;while (gap > 1){//gap = gap / 3 + 1;gap = gap / 2;//gap趟for (int j = 0; j < gap; j++){//一趟的for (int i = j; i < n - gap; i+=gap)//每次跳跃gap{int end = i;int tmp = a[end + gap];while (end >= 0){if (tmp < a[end]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}}}
}

上面的代码可以进行优化,不需要单独排每一趟,直接可将gap趟一次排。

void ShellSort(int* a, int n)
{int gap = n;while (gap > 1){//gap = gap / 3 + 1;gap = gap / 2;//gap趟一起排for (int i = 0; i < n - gap; i++){int end = i;int tmp = a[end + gap];while (end >= 0){if (tmp < a[end]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}}
}

希尔排序的特性总结:

  1. 时间复杂度:O(N^1.3)
  2. 空间复杂度:O(1)
  3. 稳定性:不稳定

2.2选择排序

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

2.2.1直接选择排序:

在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素。
在这里插入图片描述

void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}void SelectSort(int* a, int n)
{for (int i = 0; i < n - 1; i++){int m = i;//记录当前数的下标for (int j = i + 1; j < n; j++){if (a[j] < a[m])//将当前数与其后的数对比{m = j;//记录较小值的下标}}//较小值不是当前数,交换if (m != i){Swap(&a[i], &a[m]);}}
}

优化:一趟遍历找出最大与最小值。

void SelectSort(int* a, int n)
{int left = 0;int right = n - 1;while(left < right){int max = left;int min = left;for (int i = left; i <= right; i++){//找最大值if (a[i] > a[max])max = i;//找最小值if (a[i] < a[min])min = i;}Swap(&a[min], &a[left]);//若最大值在最左侧,其会被换到最小值位置if (max == left){max = min;}Swap(&a[max], &a[right]);left++;right--;}
}

在这里插入图片描述
选择排序的特性总结:

  1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

2.2.2堆排序

堆排序在前面已经写过,点击链接跳转至堆排序

排序的特性总结:

  1. 堆排序使用堆来选数,效率就高了很多。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

2.3交换排序

  • 基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置。
  • 交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

2.3.1冒泡排序

冒泡排序相信大家都非常熟悉了,直接上代码吧。
在这里插入图片描述

void BubbleSort(int* a, int n)
{//进行多少趟比较for (int i = 0; i < n - 1; i++){//每趟比较的次数for (int j = 0; j < n - 1 - i; j++){if (a[j] > a[j + 1]){Swap(&a[j], &a[j + 1]);}}Print(a, n);}
}

在这里插入图片描述
冒泡排序的特性总结:

  1. 冒泡排序是一种非常容易理解的排序
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:稳定

2.3.2快速排序

Hoare法

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列左子序列中所有元素均小于基准值右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
在这里插入图片描述
如图所示:
right从右往左找小于key的;left从左往右找大于key的,然后二者交换。继续找,直到二者相遇;相遇以后,需要和key位置数交换,此时key位置的数就处在了排序完成后应该在的位置。
然后再对key位置左边与右边进行上述相同的操作即可完成排序。

为什么二者相遇的位置一定比key小呢?
此处就是该算法的精髓,因为是right先走,right停下来的位置一定比key小,或者right到了key位置。、

void QuickSort(int* a, int left,int right)
{//若区间只有一个数,则已经有序if (left >= right)return;int begin = left;int end = right;int key = left;//基准值while (left < right){//从右往左,找比key位置小的,不小就左移while (left < right && a[right] >= a[key]){right--;}//从左往右,找比key位置大的,不大就右移while (left < right && a[left] <= a[key]){left++;}//left位置比key大,right位置比key小。交换Swap(&a[left], &a[right]);}//left与right相遇,那就与key交换Swap(&a[key], &a[right]);key = left;//递归左右区间//[begin,key-1] key [key+1,end]QuickSort(a, begin, key - 1);QuickSort(a, key + 1, end);
}

我们都知道快排很快,它的时间复杂度为O(N*logN),但真的是这样吗?

思考:若数据有序或已经接近有序,该算法还快吗?
在这里插入图片描述

如果是这种情况,那么这个基准值每次都会选到最小的值,此时它的时间复杂度就是N^2。那有什么解决办法吗?
使用随机取key法或三数取中法。

  • 随机数选key就是每次选的key都不一定,但有时可以避免最坏情况
	int begin = left;int end = right;//使随机数的范围再[left,rihgt]中int randk = rand() % (right - left);randk += left;//为了我们后面代码的逻辑不改变,将randk位置与left位置交换Swap(&a[left], &a[randk]);int key = left;//基准值
  • 三数取中法
    这里的取中并不是取中间的数,而是三个数中,位于中间大小的数。
int GetMid(int* a, int left, int right)
{int mid = (left + right) / 2;if (a[mid] < a[right]){if (a[mid] > a[left]){//left < mid < rightreturn mid;}else if (a[left] < a[right]){//mid < left < rightreturn left;}else{	//left < right < midreturn right;}}else//a[mid] > a[right]{if (a[mid] < a[left]){//right < mid < leftreturn mid;}else if (a[left] > a[right]){//right < left < midreturn left;}else{//left < right < midreturn right;}}
}void QuickSort(int* a, int left,int right)
{//若区间只有一个数,则已经有序if (left >= right)return;int begin = left;int end = right;使随机数的范围再[left,rihgt]中//int randk = rand() % (right - left);//randk += left;为了我们后面代码的逻辑不改变,将randk位置与left位置交换//Swap(&a[left], &a[randk]);int midk = GetMid(a, left, right);Swap(&a[left], &a[midk]);int key = left;//基准值while (left < right){//从右往左,找比key位置小的,不小就左移while (left < right && a[right] >= a[key]){right--;}//从左往右,找比key位置大的,不大就右移while (left < right && a[left] <= a[key]){left++;}//left位置比key大,right位置比key小。交换Swap(&a[left], &a[right]);}//left与right相遇,那就与key交换Swap(&a[key], &a[right]);key = left;//递归左右区间//[begin,key-1] key [key+1,end]QuickSort(a, begin, key - 1);QuickSort(a, key + 1, end);
}
  • 小区间优化
    当快排进行到数据元素比较少的时候,使用快速排序走递归的消耗是比较大的,最后一层的递归占整个递归的80%-%90。是不值当的,如下图这种情况:

在这里插入图片描述
对于这种情况,我们给出小区间优化的方式。即当递归进入待排序数字只剩下10个左右时,直接使用插入排序。

	//小区间优化if (right - left + 1 < 10){//进行插入排序InsertSort(a + left, right - left - 1);}else{//继续进行递归}

前后指针法

先看一下动图演示
在这里插入图片描述
此方法与第一种方法不同之处在于,它不是一左一右了。使用前后指针,cur指针为前指针,它找比key小的,找到以后,先让prev++,然后二者在交换,最后自己在++;当cur超出范围时,prev位置小于key,将prev与key交换,本轮排序结束。
在这里插入图片描述

void QuickSort2(int* a, int left, int right)
{if (left >= right)return;int prev = left;int cur = prev + 1;int key = left;//当前值比key小,先++prev,然后交换while (cur <= right){if (a[cur] < a[key]){++prev;Swap(&a[prev], &a[cur]);}cur++;}//使key位于正确位置Swap(&a[key], &a[prev]);key = prev;//递归左右区间QuickSort2(a, left, key - 1);QuickSort2(a, key + 1, right);
}

为了避免自己与自己进行无意义的交换,代码也可以写成这样:

void QuickSort2(int* a, int left, int right)
{if (left >= right)return;int prev = left;int cur = prev + 1;int key = left;//当前值比key小,先++prev,然后交换/*while (cur <= right){if (a[cur] < a[key]){++prev;Swap(&a[prev], &a[cur]);}cur++;}*/while (cur <= right){if (a[cur] < a[key] && ++prev != cur){Swap(&a[prev], &a[cur]);}cur++;}//使key位于正确位置Swap(&a[key], &a[prev]);key = prev;//递归左右区间QuickSort2(a, left, key - 1);QuickSort2(a, key + 1, right);
}

挖坑法

挖坑法与Hoare法类似
在这里插入图片描述
将步骤拆解下来就是下面这样
在这里插入图片描述

void QuickSort3(int* a, int left, int right)
{if (left >= right)return;int begin = left;int end = right;int key = a[left];int pos = left;//选定坑位while (left < right){while (left <  right && a[right]>= key){right--;}//从右边找,找到了比key小的,数据变化,坑位变化a[pos] = a[right];pos = right;//换坑while (left < right && a[left] <= key){left++;}//从左边找,找到了比key大的,数据变化,坑位变化a[pos] = a[left];pos = left;}//此时left与right相遇a[pos] = key;//[begin,pos-1] pos [pos+1,end]QuickSort3(a, begin, pos - 1);QuickSort3(a, pos + 1, end);
}

非递归版本

如果待排序的数据量非常大时,会递归很多次,可能会导致栈溢出,所以非递归版本也是我们必须掌握的。
其实非递归版本也是利用栈后进先出的特性,模拟出的递归的效果。
在这里插入图片描述

void QuickSortNonR(int* a, int left, int right)
{Stack st;StackInit(&st);//左右区间先入栈StackPush(&st, right);StackPush(&st, left); //栈不为空,就取栈顶元素排序while (!StackEmpty(&st)){int begin = StackTopElement(&st);StackPop(&st);int end = StackTopElement(&st);StackPop(&st);//前后指针法,进行单趟排int prev = begin;int cur = prev + 1;int key = begin;while (cur <= end){if (a[cur] < a[key] && ++prev != cur){Swap(&a[prev], &a[cur]);}cur++;}//使key位于正确位置Swap(&a[key], &a[prev]);key = prev;//[begin,key-1] key [key+1,end]//继续入栈,先入右,再入左if (key + 1 < end){StackPush(&st, end);StackPush(&st, key + 1);}if (key - 1 > begin){StackPush(&st, key - 1);StackPush(&st, begin);}}StackDestroy(&st);
}

快速排序的特性总结:

  1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
  2. 时间复杂度:O(N*logN

在这里插入图片描述

  1. 空间复杂度:O(logN)
  2. 稳定性:不稳定

2.4归并排序

基本思想:
归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并

归并排序算法有两个基本的操作,一个是分,也就是把原数组划分成两个子数组的过程。另一个是治,它将两个有序数组合并成一个更大的有序数组。

  1. 将待排序的线性表不断地切分成若干个子表,直到每个子表只包含一个元素,这时,可以认为只包含一个元素的子表是有序表。
  2. 将子表两两合并,每合并一次,就会产生一个新的且更长的有序表,重复这一步骤,直到最后只剩下一个子表,这个子表就是排好序的线性表

分的过程就是将数据拆到只有一个数据时,此时该数据自身有序。
什么时候就拆好了呢?
当数据的左右边界相等时,就只剩下一个数据,此时可以合并了,如下图:
在这里插入图片描述
那它的合并又是怎么合的呢?难道在原数组上合并吗?
肯定不是这样的,如果在原数组上合并的话,那数据就乱套了。
因此,我们需要借助一个临时数组来保存数据,待数据合并后,在将临时数组中的数据拷回到原数组中。

在这里插入图片描述
动图演示

在这里插入图片描述

递归版本

#include<string.h>void _MergeSort(int* a, int begin, int end, int* tmp)
{//仅剩下一个数据,自身有序,不在进行递归if (begin == end)return;int mid = (begin + end) / 2;//分的过程:递归左右区间,使左右区间有序_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid+1, end, tmp);//两区间已经有序,进行合并int left1 = begin, right1 = mid;int left2 = mid + 1, right2 = end;int tmpi = begin;//往tmp数组存放位置的下标//两区间均未遍历完while (left1 <= right1 && left2 <= right2){//按序存放进tmp数组if (a[left1] < a[left2]){tmp[tmpi++] = a[left1++];}else{tmp[tmpi++] = a[left2++];}}//有一个遍历完了while (left1 <= right1){tmp[tmpi++] = a[left1++];}while (left2 <= right2){tmp[tmpi++] = a[left2++];}//tmp数组中的数据已经有序,拷贝回原数组//注意数据拷贝元素的位置memcpy(a + begin, tmp + begin, sizeof(int) * (tmpi - begin));
}void MergeSort(int* a, int n)
{//开辟临时数组int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}_MergeSort(a, 0, n - 1, tmp);free(tmp);tmp = NULL;
}

非递归版本

该方法的思想和递归相似。

在这里插入图片描述

void MergeSortNonR(int* a, int n)
{//开辟临时数组int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}int gap = 1; //最开始为 1个一组,每组均有序while (gap < n){//gap个分为一组,每次分两组,然后取小进行尾插for (int i = 0; i < n; i += 2*gap){int left1 = i, right1 = left1 + gap - 1;int left2 = left1 + gap, right2 = left2 + gap - 1;int tmpi = i;while (left1 <= right1 && left2 <= right2){//按序存放进tmp数组if (a[left1] < a[left2]){tmp[tmpi++] = a[left1++];}else{tmp[tmpi++] = a[left2++];}}//有一个遍历完了while (left1 <= right1){tmp[tmpi++] = a[left1++];}while (left2 <= right2){tmp[tmpi++] = a[left2++];}//将临时数组拷回原数组memcpy(a + i, tmp + i, sizeof(int) * tmpi - i);}gap *= 2;}free(tmp);tmp = NULL;
}

运行上述代码,我们会发现会出现越界问题
在这里插入图片描述
我们分析一下:

  • 首先,我们的left1=i,i<n,所以left1不可能越界
  • right1可能越界,如果right1越界那说明数组已经有序了,不需要进行排序
  • left2可能越界,如果right2越界那说明数组也已经有序了,不需要进行排序
  • right2也可能越界,当right2越界时,[left2,未越界] right2,那么我们需要对未越界的部分进行排序。
	if (right1 >= n || left1 >= n){break;}if (right2 >= n){right2 = n - 1;}

到此,我们的归并排序就算完美了。

void MergeSortNonR(int* a, int n)
{//开辟临时数组int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}int gap = 1; //最开始为1个一组,每组均有序while (gap < n){//gap个分为一组,每次分两组for (int i = 0; i < n; i += 2*gap){int left1 = i, right1 = left1 + gap - 1;int left2 = left1 + gap, right2 = left2 + gap - 1;//printf("[%d,%d][%d,%d] ", left1, right1, left2, right2);//无需再排if (right1 >= n || left1 >= n){break;}//部分要排if (right2 >= n){right2 = n - 1;}int tmpi = i;while (left1 <= right1 && left2 <= right2){//按序存放进tmp数组if (a[left1] < a[left2]){tmp[tmpi++] = a[left1++];}else{tmp[tmpi++] = a[left2++];}}//有一个遍历完了while (left1 <= right1){tmp[tmpi++] = a[left1++];}while (left2 <= right2){tmp[tmpi++] = a[left2++];}//将临时数组拷回原数组memcpy(a + i, tmp + i, sizeof(int) * (tmpi - i));}gap *= 2;//printf("\n");}free(tmp);tmp = NULL;
}

归并排序的特性总结:

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(N)
  4. 稳定性:稳定

2.5计数排序

计数排序属于非比较排序,那什么较非比较排序呢?–排序的关键逻辑不是比较出来的。
那具体是如何实现的呢?

  1. 统计相同元素出现次数
  2. 根据统计的结果将序列回收到原来的序列中

动图演示
在这里插入图片描述
从图中我们可以看出,它是将数据的个数收集到一个临时数组中,最后根据临时数组的内容有序放回到原数组中。
但我们这个临时数组开多大呢?和原数组一样大吗?那未免有点太浪费了。
我们只需要找出数据中的最大与最小值,数组大小开最大-最小+1就够了。

例如:假设数组元素大小为100-200之间的数据,那就只需要开100+1个空间。 由于数组下标是从0开始的,而我最小的数据是100,那101就越界了,所以我们需要将待排序数据减去所有数组中的最小值再放进临时数组中

void CountSort(int* a, int n)
{int max = a[0];int min = a[0];for (int i = 0; i < n; i++){if (a[i] > max){max = a[i];}if (a[i] < min){min = a[i];}}//所开数组的大小int range = max - min + 1;int* tmp = (int*)calloc(range, sizeof(int));if (tmp == NULL){perror("calloc fail");return;}//统计各数据的个数for (int i = 0; i < n; i++){tmp[a[i]-min]++;}int j = 0;for (int i = 0; i < range; i++){//当前数组元素不为0,还有为排序元素while (tmp[i]--){a[j++] = i + min;}}
}

计数排序的特性总结:

  1. 计数排序在数据范围集中时,效率很高,但是适用范围及场景有限。
  2. 时间复杂度:O(MAX(N,范围))
  3. 空间复杂度:O(范围)
  4. 稳定性:稳定

3.排序的比较

排序方法平均情况最好情况最坏情况辅助空间稳定性
冒泡排序O(n2)O(n)(有序)O(n2)O(1)稳定
简单选择排序O(n2)O(2)O(n2)O(1)不稳定
直接插入排序O(n2)O(n)(有序)O(n2)O(1)稳定
希尔排序O(nlogn)~O(n2)O(n1.3)O(n2)O(1)不稳定
堆排序O(nlogn)O(nlogn)O(nlogn)O(1)不稳定
归并排序O(nlogn)O(nlogn)O(nlogn)O(n)稳定
快速排序O(nlogn)O(nlogn)O(nlogn)O(logn)~O(n)(递归)不稳定
计数排序O(Max(n,范围))O(Min(n,范围))O(Max(n,范围))O(范围)不稳定

稳定性:

若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。

稳定的都好理解,不稳定的如下:
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/779165.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024年EDM邮件营销群发平台怎么选?

在2024年选择适合的EDM&#xff08;电子邮件直接营销&#xff09;邮件营销群发平台时&#xff0c;需要考虑以下几个关键要素来评估云衔科技以及其他供应商的产品或服务是否符合您的需求&#xff1a; 一、功能完备性&#xff1a; 1、智能自动化&#xff1a;确保云衔科技提供的…

用DataGrip连接hive时报错:User: root is not allowed to impersonate plck5,解决方法

你可以尝试关闭主机校验 修改hive安装目录下conf/hive-site.xml,将hive.server2.enable.doAs设置成false <property><name>hive.server2.enable.doAs</name><value>false</value><description>Setting this property to true will have H…

警惕.360勒索病毒:如何预防.360勒索病毒攻击

导言&#xff1a; 在网络安全领域&#xff0c;勒索病毒是一种非常危险的恶意软件&#xff0c;它以其独特的加密方式和高昂的赎金要求&#xff0c;给个人和企业带来了严重的损失。.360勒索病毒便是其中之一&#xff0c;它属于BeijingCrypt勒索病毒家族&#xff0c;具有高度的隐…

office安装和卸载

目录 安装文件下载安装破解卸载 安装文件下载 链接&#xff1a;https://pan.baidu.com/s/1cBRv-NwNOf2pQyd7XBRu6A?pwdabcd 提取码&#xff1a;abcd 提供内容如下: ├── pdf │ ├── Access2007宝典.pdf │ ├── Excel2007宝典.pdf │ ├── Project2007完全掌…

scGRN:人与鼠的GRN平台

基因调控网络GRN是包含转录因子TFs与其下游靶基因之间的调控相互作用的可解释图模型。了解GRN的拓扑结构和动力学是解释疾病病因机制和将相应发现转化为新疗法的基础。单细胞多组学技术的最新进展促使从单细胞转录组学和表观基因组学数据中以前所未有的分辨率推断GRN。在这里&a…

ClickHouse03-小白如何快速搭建ClickHouse集群

普通测试通常使用ClickHouse单节点就可以了&#xff0c;但是生产环境不免需要考虑多活、负载等高可用问题&#xff0c;集群就成了基础需求 ClickHouse在集群的选择上&#xff0c;作者已知的有两种&#xff1a; 使用ZooKeeper作为节点协调的组件&#xff0c;使用ClickHouse-Kee…

红米手机Redmi 不会自动弹出USB调试选项,如何处理?(红米小米均适用)

参考&#xff1a; 红米手机Redmi 不会自动弹出USB调试选项&#xff0c;如何处理&#xff1f;&#xff08;红米小米均适用&#xff09; - 知乎 以红米9A为例&#xff1b; 【设置】菜单进入后&#xff0c;找到【我的设备】&#xff0c; 选择【全部参数】&#xff0c; 对准miui版…

SQL96 返回顾客名称和相关订单号(表的普通联结、内联结inner join..on..)

方法一&#xff1a;普通联结 select cust_name, order_num from Customers C,Orders O where C.cust_id O.cust_id order by cust_name,order_num;方法二&#xff1a;使用内连接 select cust_name,order_num from Customers C inner join Orders O on C.cust_id O.cust_id …

测试人员如何提交一条高质量的bug

测试人员在测试软件过程中&#xff0c;发现bug是必然的&#xff0c;那么发现bug后就要提交bug到缺陷管理系统中&#xff0c;如何提交一条高质量的bug&#xff0c;是每一个测试人员值得深思的问题&#xff0c;如果bug提交的不规范&#xff0c;不准确会导致开发人员理解错误&…

Python工具箱系列(五十一)

九宫格与词云 对图片进行九宫格切割&#xff0c;并且放到微信朋友圈曾经风靡一时。对于python来说&#xff0c;这个也非常简单。 from PIL import Image import mathdef ninerectanglegrid(inputfilename):"""实现九宫格切割Args:inputfilename (string): 输入…

golang import引用项目下其他文件内函数

初始化项目 go mod init [module名字] go mod init project 项目结构 go mod 文件 代码 需要暴露给外界使用的变量/函数名必须大写 在main.go中引入&#xff0c;当前项目模块名/要引用的包名 package mainimport (// 这里的路径开头为项目go.mod中的module"project/…

DHCP设置二

华为ensp模拟实验 准备工作 需要设备&#xff1a;路由器 一台 交换机 两台 pc两台 ip划分网段 &#xff1a;192.168.10.0 24 192.168.20.0 24 当我们准备好之后就可以开机了 开机实验 点击菜单栏小三角&#xff0c;开启设备。 输入system-view进入系统视图&#x…

深度解析:Elasticsearch检索请求原理

在上一篇文章中&#xff0c;我们学习了 Elasticsearch 的写入流程&#xff0c;今天我们来学习一下 Elasticsearch 的读取流程&#xff0c;当一个检索请求到达 Elasticsearch 之后是如何进行检索的呢&#xff1f; 下面先说一下一个总的检索流程。 1、客户端发送请求到任意一个…

卓翼飞思全国合作伙伴火热招募,共筑智能生态

摘要&#xff1a;市场有可为&#xff0c;政策高扶持 抢占AI高地&#xff0c;共筑智能生态 卓翼飞思全国合作伙伴招募计划 在人工智能的浪潮下&#xff0c;我们正见证一个由数据驱动、智能主导的新时代的到来。无人智能技术作为人工智能领域的重要分支&#xff0c;正在以其独特…

Qt篇——Qt无法翻译tr()里面的字符串

最近遇到使用Qt语言家翻译功能时&#xff0c;ui界面中的中文都能够翻译成英文&#xff0c;但是tr("测试")这种动态设置给控件的中文&#xff0c;无法翻译&#xff08;lang_English.ts文件中的翻译已经正确添加了tr()字符串的翻译&#xff09;。 上网搜了很多资料&am…

Linux 常用命令(1)

&#x1f607;作者介绍&#xff1a;一个有梦想、有理想、有目标的&#xff0c;且渴望能够学有所成的追梦人。 &#x1f386;学习格言&#xff1a;不读书的人,思想就会停止。——狄德罗 ⛪️个人主页&#xff1a;进入博主主页 &#x1f5fc;专栏系列&#xff1a;Linux 随笔集合 …

【漏洞复现】通天星CMSV6 admin 弱口令漏洞(CVE-2024-29666)

0x01 产品简介 CMSV6平台是基于车辆位置信息服务和实时视频传输服务的创新技术和开放运营理念。为GPS运营商车辆硬件设备制造商、车队管理企业等车辆运营相关企业提供核心基础数据服务。 0x02 漏洞概述 CMSV6 7.31.0.2、7.32.0.3版本中存在弱密码漏洞&#xff0c;未授权的攻…

【Linux】图文详解Xshell远程连接服务器:以Amazon EC2 VPS为例

文章目录 问题描述解决方案Q&A 问题描述 本地cmd或powershell使用ssh -i “your.pem” user_nameip_address是可以登录Amazon EC2云服务器的。 然而&#xff0c;当使用XShell以SSH加载PEM文件方式登录亚马逊EC2云服务器&#xff0c;一直出现输入密码的问题&#xff0c;如…

小狐狸JSON-RPC:wallet_addEthereumChain(添加指定链)

wallet_addethereumchain&#xff08;添加网络&#xff09; var res await window.ethereum.request({"method": "wallet_addEthereumChain","params": [{"chainId": "0x64", // 链 ID &#xff08;必填&#xff09;"…

JavaEE 初阶篇-深入了解多线程等待与多线程状态

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 线程等待 1.1 线程等待 - join() 方法 1.1.1 main 线程中等待多个线程 1.1.2 main 线程等待 t2 线程且t2 线程等待 t1 线程 1.1.3 其他线程阻塞等待 main 线程 1.…