【Java面试题】计算机网络

文章目录

  • 1.计算机网络基础
    • 1.1网络分层模型/OSI七层模型是什么?
    • 1.2TCP/IP四层模型是什么?每一层的作用?
      • 1.2.1TCP四层模型?
      • 1.2.2为什么网络要分层?
    • 1.2常见网络协议
      • 1.2.1应用层常见的协议
      • 1.2.2网络层常见的协议
  • 2.HTTP
    • 2.1用户从输入URL到页面展示发生的内容?
    • 2.2HTTP和HTTPS有什么区别?
    • 2.3URI和URL的区别?
    • 2.4GET和POST的区别?
  • 3.DNS
    • 3.1DNS的作用
    • 3.2DNS服务器的类型?根服务器的个数?
  • 4.TCP与UDP
    • 4.1TCP与UDP的区别
    • 4.2TCP三次握手和四次挥手(传输层)
      • 4.2.1TCP三次握手——建立连接
      • 4.2.2为什么要三次握手?
      • 4.2.3第二次握手传回了ACK,为什么还要传回SYN?
      • 4.2.4断开连接——TCP四次挥手
      • 4.2.5为什么要四次挥手?
      • 4.2.6为什么不能把服务器发送的ACK和FIN合并起来,变成三次挥手?
      • 4.2.7若第二次挥手时服务器的ACK没有送达客户端,会怎么样?

1.计算机网络基础

1.1网络分层模型/OSI七层模型是什么?

OSI 七层模型 是国际标准化组织提出一个网络分层模型,其大体结构以及每一层提供的功能如下图所示:

OSI 七层模型

每一层都专注做一件事情,并且每一层都需要使用下一层提供的功能比如传输层需要使用网络层提供的路由和寻址功能,这样传输层才知道把数据传输到哪里去。

1.2TCP/IP四层模型是什么?每一层的作用?

1.2.1TCP四层模型?

TCP/IP 四层模型 是目前被广泛采用的一种模型,我们可以将 TCP / IP 模型看作是 OSI 七层模型的精简版本,由以下 4 层组成:

  1. 应用层
  2. 传输层
  3. 网络层
  4. 网络接口层

需要注意的是,我们并不能将 TCP/IP 四层模型 和 OSI 七层模型完全精确地匹配起来,不过可以简单将两者对应起来,如下图所示:

TCP/IP 四层模型

1.2.2为什么网络要分层?

  • 各层之间相互独立:各层之间相互独立,各层之间不需要关心其他层是如何实现的,只需要知道自己如何调用下层提供好的功能就可以了(可以简单理解为接口调用)。这个和我们对开发时系统进行分层是一个道理。

  • 提高了灵活性和可替换性:每一层都可以使用最适合的技术来实现,你只需要保证你提供的功能以及暴露的接口的规则没有改变就行了。并且,每一层都可以根据需要进行修改或替换,而不会影响到整个网络的结构。这个和我们平时开发系统的时候要求的高内聚、低耦合的原则也是可以对应上的。

  • 大问题化小:分层可以将复杂的网络问题分解为许多比较小的、界线比较清晰简单的小问题来处理和解决。这样使得复杂的计算机网络系统变得易于设计,实现和标准化。 这个和我们平时开发的时候,一般会将系统功能分解,然后将复杂的问题分解为容易理解的更小的问题是相对应的,这些较小的问题具有更好的边界(目标和接口)定义。

1.2常见网络协议

1.2.1应用层常见的协议

image-20240319183654966

  • HTTP(Hypertext Transfer Protocol,超文本传输协议):基于 TCP 协议,是一种用于传输超文本和多媒体内容的协议,主要是为 Web 浏览器与 Web 服务器之间的通信而设计的。当我们使用浏览器浏览网页的时候,我们网页就是通过 HTTP 请求进行加载的。
  • SMTP(Simple Mail Transfer Protocol,简单邮件发送协议):基于 TCP 协议,是一种用于发送电子邮件的协议。注意 ⚠️:SMTP 协议只负责邮件的发送,而不是接收。要从邮件服务器接收邮件,需要使用 POP3 或 IMAP 协议。
  • POP3/IMAP(邮件接收协议):基于 TCP 协议,两者都是负责邮件接收的协议。IMAP 协议是比 POP3 更新的协议,它在功能和性能上都更加强大。IMAP 支持邮件搜索、标记、分类、归档等高级功能,而且可以在多个设备之间同步邮件状态。几乎所有现代电子邮件客户端和服务器都支持 IMAP。
  • FTP(File Transfer Protocol,文件传输协议) : 基于 TCP 协议,是一种用于在计算机之间传输文件的协议,可以屏蔽操作系统和文件存储方式。注意 ⚠️:FTP 是一种不安全的协议,因为它在传输过程中不会对数据进行加密。建议在传输敏感数据时使用更安全的协议,如 SFTP。
  • Telnet(远程登陆协议):基于 TCP 协议,用于通过一个终端登陆到其他服务器。Telnet 协议的最大缺点之一是所有数据(包括用户名和密码)均以明文形式发送,这有潜在的安全风险。这就是为什么如今很少使用 Telnet,而是使用一种称为 SSH 的非常安全的网络传输协议的主要原因。
  • SSH(Secure Shell Protocol,安全的网络传输协议):基于 TCP 协议,通过加密和认证机制实现安全的访问和文件传输等业务
  • RTP(Real-time Transport Protocol,实时传输协议):通常基于 UDP 协议,但也支持 TCP 协议。它提供了端到端的实时传输数据的功能,但不包含资源预留存、不保证实时传输质量,这些功能由 WebRTC 实现。
  • DNS(Domain Name System,域名管理系统): 基于 UDP 协议,用于解决域名和 IP 地址的映射问题。

1.2.2网络层常见的协议

网络层常见协议

  • IP(Internet Protocol,网际协议):TCP/IP 协议中最重要的协议之一,属于网络层的协议,主要作用是定义数据包的格式、对数据包进行路由和寻址,以便它们可以跨网络传播并到达正确的目的地。目前 IP 协议主要分为两种,一种是过去的 IPv4,另一种是较新的 IPv6,目前这两种协议都在使用,但后者已经被提议来取代前者。
  • ARP(Address Resolution Protocol,地址解析协议):ARP 协议解决的是网络层地址和链路层地址之间的转换问题。因为一个 IP 数据报在物理上传输的过程中,总是需要知道下一跳(物理上的下一个目的地)该去往何处,但 IP 地址属于逻辑地址,而 MAC 地址才是物理地址,ARP 协议解决了 IP 地址转 MAC 地址的一些问题。
  • ICMP(Internet Control Message Protocol,互联网控制报文协议):一种用于传输网络状态和错误消息的协议,常用于网络诊断和故障排除。例如,Ping 工具就使用了 ICMP 协议来测试网络连通性。
  • NAT(Network Address Translation,网络地址转换协议):NAT 协议的应用场景如同它的名称——网络地址转换,应用于内部网到外部网的地址转换过程中。具体地说,在一个小的子网(局域网,LAN)内,各主机使用的是同一个 LAN 下的 IP 地址,但在该 LAN 以外,在广域网(WAN)中,需要一个统一的 IP 地址来标识该 LAN 在整个 Internet 上的位置。
  • OSPF(Open Shortest Path First,开放式最短路径优先) ):一种内部网关协议(Interior Gateway Protocol,IGP),也是广泛使用的一种动态路由协议,基于链路状态算法,考虑了链路的带宽、延迟等因素来选择最佳路径。
  • RIP(Routing Information Protocol,路由信息协议):一种内部网关协议(Interior Gateway Protocol,IGP),也是一种动态路由协议,基于距离向量算法,使用固定的跳数作为度量标准,选择跳数最少的路径作为最佳路径。
  • BGP(Border Gateway Protocol,边界网关协议):一种用来在路由选择域之间交换网络层可达性信息(Network Layer Reachability Information,NLRI)的路由选择协议,具有高度的灵活性和可扩展性

2.HTTP

2.1用户从输入URL到页面展示发生的内容?

img

上图有一个错误需要注意:是 OSPF 不是 OPSF。 OSPF(Open Shortest Path First,ospf)开放最短路径优先协议, 是由 Internet 工程任务组开发的路由选择协议

总体来说分为以下几个步骤:

  1. 在浏览器中输入指定网页的 URL。
  2. 浏览器通过 DNS 协议,获取域名对应的 IP 地址
  3. 浏览器根据 IP 地址和端口号,向目标服务器发起一个 TCP 连接请求。
  4. 浏览器在 TCP 连接上,向服务器发送一个 HTTP 请求报文,请求获取网页的内容。
  5. 服务器收到 HTTP 请求报文后,处理请求,并返回 HTTP 响应报文给浏览器。
  6. 浏览器收到 HTTP 响应报文后,解析响应体中的 HTML 代码,渲染网页的结构和样式,同时根据 HTML 中的其他资源的 URL(如图片、CSS、JS 等),再次发起 HTTP 请求,获取这些资源的内容,直到网页完全加载显示。
  7. 浏览器在不需要和服务器通信时,可以主动关闭 TCP 连接,或者等待服务器的关闭请求

2.2HTTP和HTTPS有什么区别?

HTTP 和 HTTPS 对比

  • 端口号:HTTP 默认是 80,HTTPS 默认是 443。
  • URL 前缀:HTTP 的 URL 前缀是 http://,HTTPS 的 URL 前缀是 https://
  • 安全性和资源消耗:HTTP 协议运行在 TCP 之上,所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份。HTTPS 是运行在 SSL/TLS 之上的 HTTP 协议,SSL/TLS 运行在 TCP 之上。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。所以说,HTTP 安全性没有 HTTPS 高,但是 HTTPS 比 HTTP 耗费更多服务器资源。
  • SEO(搜索引擎优化):搜索引擎通常会更青睐使用 HTTPS 协议的网站,因为 HTTPS 能够提供更高的安全性和用户隐私保护。使用 HTTPS 协议的网站在搜索结果中可能会被优先显示,从而对 SEO 产生影响。

2.3URI和URL的区别?

  • URI(Uniform Resource Identifier) 是统一资源标志符,可以唯一标识一个资源
  • URL(Uniform Resource Locator) 是统一资源定位符,可以提供该资源的路径。它是一种具体的 URI,即 URL 可以用来标识一个资源,而且还指明了如何 locate 这个资源。

URI 的作用像身份证号一样URL 的作用更像家庭住址一样。URL 是一种具体的 URI,它不仅唯一标识资源,而且还提供了定位该资源的信息。

2.4GET和POST的区别?

GET 和 POST 是 HTTP 协议中两种常用的请求方法,它们在不同的场景和目的下有不同的特点和用法。一般来说,可以从以下几个方面来区分二者(重点搞清两者在语义上的区别即可):

  1. 语义(主要区别)
    • GET 通常用于获取或查询资源
    • POST 通常用于创建或修改资源
  2. 幂等
    • GET 请求是幂等的,即多次重复执行不会改变资源的状态
    • POST 请求是不幂等的,即每次执行可能会产生不同的结果或影响资源的状态。
  3. 请求参数格式
    • GET 请求的参数通常放在 URL 中,形成查询字符串(querystring),GET 请求的 URL 长度受到浏览器和服务器的限制
    • POST 请求的参数通常放在请求体(body)中,可以有多种编码格式,如 application/x-www-form-urlencoded、multipart/form-data、application/json 等。而 POST 请求的 body 大小则没有明确的限制。不过,实际上 GET 请求也可以用 body 传输数据,只是并不推荐这样做,因为这样可能会导致一些兼容性或者语义上的问题。
  4. 缓存
    • 由于 GET 请求是幂等的,它可以被浏览器或其他中间节点(如代理、网关)缓存起来,以提高性能和效率
    • POST 请求则不适合被缓存,因为它可能有副作用,每次执行可能需要实时的响应。
  5. 安全性
    • GET 请求和 POST 请求如果使用 HTTP 协议的话,那都不安全,因为 HTTP 协议本身是明文传输的,
    • 两者必须使用 HTTPS 协议来加密传输数据。另外,GET 请求相比 POST 请求更容易泄露敏感数据,因为 GET 请求的参数通常放在 URL 中。

3.DNS

3.1DNS的作用

DNS(Domain Name System)域名管理系统,是当用户使用浏览器访问网址之后,使用的第一个重要协议。DNS 要解决的是**域名和 IP 地址的映射问题**。

DNS:域名系统

在一台电脑上,可能存在浏览器 DNS 缓存,操作系统 DNS 缓存,路由器 DNS 缓存。如果以上缓存都查询不到,那么 DNS 就闪亮登场了。

目前 DNS 的设计采用的是分布式、层次数据库结构,DNS 是应用层协议,它可以在 UDP 或 TCP 协议之上运行,端口为 53

3.2DNS服务器的类型?根服务器的个数?

DNS 服务器自底向上可以依次分为以下几个层级(所有 DNS 服务器都属于以下四个类别之一):

  1. 根 DNS 服务器。根 DNS 服务器提供 TLD 服务器的 IP 地址。目前世界上只有 13 组根服务器,我国境内目前仍没有根服务器。
  2. 顶级域 DNS 服务器(TLD 服务器)。顶级域是指域名的后缀,如comorgnetedu等。国家也有自己的顶级域,如ukfrca。TLD 服务器提供了权威 DNS 服务器的 IP 地址。
  3. 权威 DNS 服务器。在因特网上具有公共可访问主机的每个组织机构必须提供公共可访问的 DNS 记录,这些记录将这些主机的名字映射为 IP 地址。
  4. 本地 DNS 服务器。每个 ISP(互联网服务提供商)都有一个自己的本地 DNS 服务器。当主机发出 DNS 请求时,该请求被发往本地 DNS 服务器,它起着代理的作用,并将该请求转发到 DNS 层次结构中。严格说来,不属于 DNS 层级结构

4.TCP与UDP

4.1TCP与UDP的区别

  1. 是否面向连接

    • UDP 在传送数据之前不需要先建立连接。
    • TCP 提供面向连接的服务,在传送数据之前必须先建立连接,数据传送结束后要释放连接。
  2. 是否是可靠传输:远的主机在收到 UDP 报文后,不需要给出任何确认,并且不保证数据不丢失,不保证是否顺序到达。TCP 提供可靠的传输服务,TCP 在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制。通过 TCP 连接传输的数据,无差错、不丢失、不重复、并且按序到达。

  3. 是否有状态:这个和上面的“是否可靠传输”相对应。TCP 传输是有状态的,这个有状态说的是 TCP 会去记录自己发送消息的状态比如消息是否发送了、是否被接收了等等。为此 ,TCP 需要维持复杂的连接状态表。而 UDP 是无状态服务,简单来说就是不管发出去之后的事情了(这很渣男!)。

  4. 传输效率:由于使用 TCP 进行传输的时候多了连接、确认、重传等机制,所以 TCP 的传输效率要比 UDP 低很多。

  5. 传输形式:TCP 是面向字节流的,UDP 是面向报文的。

  6. 首部开销:TCP 首部开销(20 ~ 60 字节)比 UDP 首部开销(8 字节)要大。

  7. 是否提供广播或多播服务:TCP 只支持点对点通信,UDP 支持一对一、一对多、多对一、多对多;

TCPUDP
是否面向连接
是否可靠
是否有状态
传输效率较慢较快
传输形式字节流数据报文段
首部开销20 ~ 60 bytes8 bytes
是否提供广播或多播服务

4.2TCP三次握手和四次挥手(传输层)

4.2.1TCP三次握手——建立连接

TCP 三次握手图解

建立一个 TCP 连接需要“三次握手”,缺一不可:

  1. 一次握手:客户端发送带有 SYN(SEQ=x) 标志的数据包 -> 服务端,然后客户端进入 SYN_SEND 状态,等待服务器的确认;(x为客户端的序列号)
  2. 二次握手:服务端发送带有 SYN+ACK(SEQ=y,ACK=x+1) 标志的数据包 –> 客户端,然后服务端进入 SYN_RECV 状态(ACK即服务器确认收到客户端的序列号,后加一返回)
  3. 三次握手:客户端发送带有 ACK(ACK=y+1) 标志的数据包 –> 服务端,然后客户端和服务器端都进入ESTABLISHED 状态,完成 TCP 三次握手。

4.2.2为什么要三次握手?

三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次握手最主要的目的就是双方确认自己与对方的发送与接收是正常的

  1. 第一次握手:Client 什么都不能确认;Server 确认了对方发送正常自己接收正常
  2. 第二次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:对方发送正常,自己接收正常(还差确认自己发送、对方接送正常
  3. 第三次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:自己发送、接收正常,对方发送、接收正常
Client角度第一次握手第二次握手第三次握手
Client 自己发送正常
Server 对方接收正常
Server对方发送正常
Client自己接收正常
Server角度第一次握手第二次握手第三次握手
Client 对方发送正常
Server 自己接收正常
Server对方发送正常
Client自己接收正常

4.2.3第二次握手传回了ACK,为什么还要传回SYN?

服务端传回发送端所发送的 ACK 是为了告诉客户端:“我接收到的信息确实就是你所发送的信号了”,这表明从客户端到服务端的通信是正常的。回传 SYN 则是为了建立并确认从服务端到客户端的通信

SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK(Acknowledgement)消息响应。这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。

4.2.4断开连接——TCP四次挥手

TCP 四次挥手图解

断开一个 TCP 连接则需要“四次挥手”,缺一不可:

  1. 第一次挥手:客户端发送一个 FIN(SEQ=x) 标志的数据包->服务端,用来关闭客户端到服务器的数据传送。然后客户端进入 FIN-WAIT-1 状态。
  2. 第二次挥手:服务器收到这个 FIN(SEQ=X) 标志的数据包,它发送一个 ACK (ACK=x+1)标志的数据包->客户端 。然后服务端进入 CLOSE-WAIT 状态,客户端进入 FIN-WAIT-2 状态。
  3. 第三次挥手:服务端发送一个 FIN (SEQ=y)标志的数据包->客户端,请求关闭连接,然后服务端进入 LAST-ACK 状态。
  4. 第四次挥手:客户端发送 ACK (ACK=y+1)标志的数据包->服务端,然后客户端进入TIME-WAIT状态,服务端在收到 ACK (ACK=y+1)标志的数据包后进入 CLOSE 状态。此时如果客户端等待 2MSL 后依然没有收到回复,就证明服务端已正常关闭,随后客户端也可以关闭连接了。

只要四次挥手没有结束,客户端和服务端就可以继续传输数据!

4.2.5为什么要四次挥手?

TCP 是全双工通信,可以双向传输数据。任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入==半关闭状态==。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了 TCP 连接。

举个例子:A 和 B 打电话,通话即将结束后。

  1. 第一次挥手:A 说“我没啥要说的了”
  2. 第二次挥手:B 回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话
  3. 第三次挥手:于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”
  4. 第四次挥手:A 回答“知道了”,这样通话才算结束。

4.2.6为什么不能把服务器发送的ACK和FIN合并起来,变成三次挥手?

因为服务器收到客户端断开连接的请求时,可能还有一些数据没有发完,这时先回复 ACK,表示接收到了断开连接的请求。等到数据发完之后再发 FIN,断开服务器到客户端的数据传送

4.2.7若第二次挥手时服务器的ACK没有送达客户端,会怎么样?

客户端没有收到 ACK 确认,会重新发送 FIN 请求

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/773815.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据分类分级赋能企业数据安全建设(附下载)

请前往知识星球下载:https://t.zsxq.com/18KTZnJMX 数据分类分级方案是指根据数据的特性、重要性以及安全性要求,将数据按照一定的标准和规则进行分类和定级,以便于更好地管理和利用这些数据。下面是一个基础的数据分类分级方案的构建步骤和…

基数排序详解

基数排序详解 一、基数排序的基本概念二、基数排序的特点二、基数排序的工作过程三、基数排序的伪代码四、基数排序的C语言代码示例五、基数排序的稳定性六、基数排序的优化与变体七、基数排序的应用场景八、结论 在计算机科学中,排序算法是一种非常基础和重要的算法…

CE认证收费标准、认证周期、认证流程

CE认证根据产品不同,对应的欧盟指令(法规)和测试标准就不同,其测试成本就不同,而测试成本是认证费用里占大的比例,因此认证费用就会不同;打个比方,空调和挖掘机,一个是家…

页面中异步请求的数据,python爬虫能爬到吗

页面中异步请求的数据通常是通过JavaScript在浏览器端发起的,这些请求在初始的HTML页面加载之后执行。Python爬虫直接请求HTML页面时,只能获取到初始的HTML内容,而无法直接获取到异步请求加载的数据。但是,有几种方法可以让Python…

Salesforce Flow直播预报

各位使用Salesforce的亲们已经发现Process Builder/Workflow距离最后退役的时间是越来越近了,强大的并且以后会更强大的Flow即将全面一统江湖,想快速上手Flow或者想了解Salesforce产品的Flow原理的宝们可以预约起来啦!

【二叉树】Leetcode 102. 二叉树的层序遍历【中等】

二叉树的层序遍历 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点) 示例1: 输入:root [3,9,20,null,null,15,7] 输出:[[3],[9,20],[15,7]] 解题思路…

如何使用ArkTS中的canvas实现签名板功能

一、屏幕旋转 实现签名板的第一个功能就是旋转屏幕。旋转屏幕在各种框架中都有不一样的方式,比如: 在H5端,我们一般是使用CSS中的transform属性中的rotate()方法来强制将网页横屏,然后实现一系列功能在嵌套第三方APP中&#xff…

spring 的理解

spring 的理解 spring 是一个基础的框架,同时提高了一个Bean 的容器,用来装载Bean对象spring会帮我们创建Bean 对象并维护Bean对象 的生命周期。在spring 框架上,还有springCloud,spring Boot 的技术框架,都是以Spring为基石的sp…

【Golang星辰图】Go语言中的数学和科学计算:从基础算法到高级工具的完整探索

加速数学和科学计算:使用Go语言的优秀库和示例代码 前言: 在当今数据驱动的世界中,数学和科学计算是解决各种问题的关键。而Go语言作为一门简单、高效和强大的编程语言,也提供了许多优秀的数学和科学计算库。本文将介绍几个流行…

Covalent Network(CQT)的以太坊时光机:在 Rollup 时代确保长期数据可用性

以太坊正在经历一场向 “Rollup 时代” 的转型之旅,这一转型由以太坊改进提案 EIP-4844 推动。这标志着区块链技术的一个关键转折,采用了一种被称为“数据块(blobs)”的新型数据结构。为了与以太坊的扩容努力保持一致,…

启动yarn时RM起不来解决办法

我玩3台虚拟机集群的时候,要起hdfs和yarn,用start-dfs.sh和start-yarn.sh启动的时候,hdfs能正常起,yarn的NM三台正常启,RM起不来,在103的log里查看了rm的日之后,它的报错信息是 报错信息&#…

【ZZULIOJ】1003: 两个整数的四则运算(Java)

题目描述 输入两个整数num1和num2,请你设计一个程序,计算并输出它们的和、差、积、整数商及余数。 输入 输入只有两个正整数num1、num2。 输出 输出占一行,包括两个数的和、差、积、商及余数,数据之间用一个空格隔开。 样例…

scss的常用技巧、循环、判断等

选择scss的原因 循环在js或者任何编程语言都是必须的,博主不太喜欢less 是因为它的判断和循环提供的不全面,所以这篇主要聊scss定义变量 scss 已$ 开头定义变量 例如$c: #fff// 数组$liColor: yellow, #ffffff, green; js中的map 或者数组 --》 type-of…

基于Arduino IDE 野火ESP8266模块 一键配网 的开发

一、配网介绍 ESP8266 一键配网(也称为 SmartConfig 或 FastConfig)是一种允许用户通过智能手机上的应用程序快速配置 ESP8266 Wi-Fi 模块的方法,而无需手动输入 SSID 和密码。为了实现这一功能,则需要一个支持 SmartConfig 的智能…

unity实现2D主角视野锥解决方案

#背景 unity引擎,2d游戏,游戏设定为黑夜,主角只能看到前方视野锥,扇形视野。 #可选解决方案 1. 使用光照和遮罩在Unity中 你可以使用光照(Light)组件来创建视野效果,结合遮罩(Mask…

微服务(基础篇-006-Docker安装-CentOS7)

目录 05-初识Docker-Docker的安装_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1LQ4y127n4?p46&spm_id_frompageDriver&vd_source60a35a11f813c6dff0b76089e5e138cc 0.安装Docker 1.CentOS安装Docker 1.1.卸载(可选) 1.2.安装dock…

51单片机学习笔记8 中断系统及定时器

51单片机学习笔记8 中断系统及定时器 一、中断的概念二、51单片机的中断1. 51单片机的中断源2. 中断的优先级3. 中断结构4. 外部中断解读5. 定时器中断6. 串口中断 三、中断相关寄存器1. IE 中断允许寄存器2. TCON 中断请求标志3. IP 中断优先级 四、中断号五、代码实现按键 &a…

怎么制作iOS证书

首先我们登录appuploder官网 搜索 appuploder 第一个就是我们官网啦,网址是:Appuploader home -- A tool improve ios develop efficiency such as submit ipa to appstore and manage ios certificate 可以跨平台开发,无论是Windows还是Ma…

六大前端自动化测试框架推荐,提升你的开发效率与质量

在前端开发中,自动化测试是确保代码质量和提升开发效率的关键环节。本文将为你详细介绍六个前端自动化测试框架,包括它们的介绍、优缺点分析、使用场景以及简单案例,帮助你选择最适合的测试工具。 一、Jest 介绍:Jest是Facebook开…

Jenkins pipeline中读写文件

下面是一个读写文件的示例,并且保证了nginx.conf中的$uri不被识别为变量 pipeline {agent anystages {stage(Write and Read File) {steps {script {echo "Build Stage"def content """ server {listen 80;listen [::]:80;server…