人工智能:神经细胞模型到神经网络模型

人工智能领域中的重要流派之一是:从神经细胞模型(Neural Cell Model)到神经网络模型(Neural Network Model)。

图片

一、神经细胞模型

第一个人工神经细胞模型是“MP”模型,它是由麦卡洛克、匹茨合作,于1943年研究成功的,这是关于神经细胞模型的奠基性工作,因而人们认为它是从脑的生物原型出发探讨人工智能的开创性成果。

“MP”模型从微观上对脑的基本单元——神经细胞的下列特性进行了模拟:

1.神经细胞的“兴奋”“抑制”两种状态,认为神经细胞的活动遵守“全或无”定律。

2.神经细胞之间的“突触”联系,分为兴奋型突触、抑制型突触。

3.神经细胞的输入、输出、多输入、单输出。输入称为“树突”,输出称为“轴突”。

4.神经细胞的空间整合作用,对不同输入端传入细胞的神经电脉冲进行信号处理。

5.神经细胞的阈值效应,当输入电脉冲的时空整合结果,使细胞膜电位升高超过阈值时,细胞兴奋,产生输出冲动。

在“MP”模型的基础上,克里纳(S.C.Kleene)等学者进一步发展与完善,研制了带有反馈的闭环神经细胞模型,在神经细胞模型的基本逻辑阈值元件的基础上,发展了“自动机理论”(Automata)。

改进的神经细胞模型,考虑了神经细胞“结构可塑性”,即突触联结系数的可变性,神经细胞之间的联结强度的可调节性。1949年,心理学家荷布(D.O.Hebb)在其著作《组织行为》(Organization Behavior)中指出,当神经细胞参与某种心理活动时,细胞之间的联结通路的信息传导能力将会增强,即所谓“Hebb学习规则”。此外,他还考虑了神经细胞对输入信号的时间整合作用、突触延时、不应期等。利用改进的神经细胞模型,可以研究神经细胞的学习功能、遗传特性、疲劳效应。

二、神经网络模型

图片

在神经细胞模型的基础上,可进一步研究各种神经网络模型,或称为“脑模型”。

50年代末到60年代初,曾出现过人工神经网络或脑模型研究的第一次高潮,例如:

“感知机”(Perceptron),是1957年由罗森勃拉特(F.Rosenblatt)等研制的,具有视觉感知与分类学习功能,最早的、最著名的脑模型。

简单感知机为三层结构:

1.输入层:感受神经网络。

2.联系层:中枢神经网络。

3.输出层:效应神经网络。

通过示教学习与样本训练,采用对“刺激—反应”的奖惩方式,感知机可以进行某些简单的文字识别、图像识别、声音识别。

在60年代初期,感知机曾盛行一时,据估计有近百个研究机构和公司,从事各种类型的感知机的研究和开发工作,进行文字、图像、声音识别的实验,例如,Mark I、Mark Ⅱ等。

但是,由于简单感知机在原理和功能上的局限性,对复杂图像的感知能力低,对非线性分类识别问题缺乏有效学习方法,以及受到当时电子技术水平的限制,人们对感知机的过高期望没有得到实现。

1969年,美国麻省理工学院(MIT)出版了关于感知机的专著《Perceptrons:An In­troduction to Computational Geometry》,作者为明斯基(M.L.Minsky)等,对简单感知机的研究结果进行了总结与系统的分析,指出简单感知机有严重的缺陷,无法识别线性不可分的模式,即使简单的异或问题,也无能为力。这种批评更促使感知机与神经网络的研究在70年代落入了低潮。

但是,仍有不少学者在困难条件下坚持人工神经网络的研究。例如:1969年,日本学者中野提出了“联想机”(Associatron);1972年,永野研究了“多层学习脑模型”;1973年,福岛提出了“认知机”(Cognitron)。

此外,除了从微观仿生学观点研究上述基于阙逻辑元件的神经网络,还有从宏观仿生学观点研究的人工神经网络,例如:1961年,德国学者斯泰布什(Steinbuch)提出的“学习矩阵”;1963年,李(Lee)提出的“人造神经元”(Artron)“拟神经元”(Neurotron)等。

80年代初期,人工神经网络的研究开始复苏。

1982年,荷普菲尔德(J.Hopfield)提出一种新的全互连型的人工神经网络,被称为“Hopfield网络”,引入所定义的能量函数,成功地求解了计算复杂度为NP完全型的“旅行商”问题。这项突破性的进展,再度唤起了人们对神经网络的研究热情。

1983年,欣顿(J.Hinton)、谢诺夫斯基(T.Sejnowski)研制出“Boltzman机”。基于这种神经网络模型,采用“模拟退火”方法,求解非线性动力学系统的优化问题,可以使系统从局部极小状态跳出,趋向于全局极小状态。

1986年,鲁姆哈特(D.Rumelhart)和麦卡兰德(J.Mc Clelland)发表了他们主编的“PDP”研究报告(Parall Distributing Processing-Explorations in the Microstructures of Cognition),公布了基于人工神经网络的并行分布处理的新进展,提出了关于认知过程的微结构理论。

同时,鲁姆哈特、维伯斯(P.Werbos)等研制出新一代的多层感知机,称之为反向传播神经网络(Back Propagation),简称“BP”网络。其中,在简单感知机上增加了中枢神经网络的联系层数,以构成多层感知机,并且采用反向传播的学习算法,利用反馈信息进行层间误差修正,从而突破了简单感知机的局限性,提高了多层感知机的识别能力,可用于求解非线性感知与复杂模式识别问题。

1986年,人工神经网络的又一项新进展是:自适应共振理论ART,它是由格罗斯伯格(S.Grossberg)、卡彭特(G.Carpenter)提出的。他们所研制的ART神经网络,具有良好的自适应特性。

1987年,首届国际人工神经网络学术大会在美国的圣迭戈(San-Diego)举行,在大会期间成立了国际神经网络协会(International Neural Netuork Society)简称INNS,掀起了人工神经网络研究的第二次高潮。

转自:人工智能:神经细胞模型到神经网络模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/77340.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java-华为真题-预定酒店

需求: 放暑假了,小王决定到某旅游景点游玩,他在网上搜索到了各种价位的酒店(长度为n的数组A),他的心理价位是x元,请帮他筛选出k个最接近x元的酒店(n>k>0)&#xff…

通常用哪些软件做数据可视化大屏?

一般就两种,一种是可视化大屏编辑软件,另一种则是BI系统(BI数据可视化工具)。考虑到数据来源多、数据量大以及数据分析效率、直观易懂性等实实在在的客观问题,建议采用BI系统来制作数据可视化大屏。 BI系统做可视化大…

【SpringMVC】JSR 303与interceptor拦截器快速入门

目录 一、JSR303 1、什么是JSR 303? 2、为什么要使用JSR 303? 3、JSR 303常用注解 3.1、常用的JSR 303注解 3.2、Validated与Valid区别 3.2.1、Validated 3.2.2、Valid 3.2.3、区别 4、使用案例 4.1、导入依赖 4.2、配置校验规则 4.3、编写…

Matlab图像处理-彩色图像基础

光谱 在17世纪60年代,人们普遍认为白光是一种没有其他颜色的纯色光,而彩色光是有某种缘故发生变化的光。为了验证这个假设,牛顿让一束阳光通过一面三棱镜,光线在墙上被分解成了八种不同的颜色,即:红、橙、…

vue基础知识九:动态给vue的data添加一个新的属性时会发生什么?怎样解决?

一、直接添加属性的问题 我们从一个例子开始 定义一个p标签&#xff0c;通过v-for指令进行遍历 然后给botton标签绑定点击事件&#xff0c;我们预期点击按钮时&#xff0c;数据新增一个属性&#xff0c;界面也 新增一行 <p v-for"(value,key) in item" :key&q…

python基于GDAL的多线程高速批量重采样、对齐栅格、对齐行列数,并无损压缩

在自己写代码处理遥感数据进行波段计算&#xff0c;或者基于遥感等空间数据进行机器学习、深度学习时&#xff0c;一般都需要各图层行列数一致。在QGIS中有“对齐栅格”工具可以完成该任务&#xff0c;但是QGIS中没有提供批量操作的接口&#xff0c;在数据比较多时&#xff0c;…

eslint写jsx报错

eslint写jsx报错 ChatGPT提示 在写JSX时&#xff0c;ESLint可能会报出一些语法错误&#xff0c;这些错误通常是由于ESLint默认配置中不支持JSX语法导致的。为了解决这些错误&#xff0c;我们需要在ESLint配置文件中启用对JSX语法的支持。 首先&#xff0c;需要安装eslint-pl…

时序分解 | MATLAB实现基于EWT经验小波变换的信号分解分量可视化

时序分解 | MATLAB实现基于EWT经验小波变换的信号分解分量可视化 目录 时序分解 | MATLAB实现基于EWT经验小波变换的信号分解分量可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 EWT经验小波变换 包含频谱相关系数 可直接运行 Matlab代码 1.可自由设置分量个数&…

SpringBoot整合Easy-ES操作演示文档

文章目录 SpringBoot整合Easy-ES操作演示文档1 概述及特性1.1 官网1.2 主要特性 2 整合配置2.1 导入POM2.2 Yaml配置2.3 EsMapperScan 注解扫描2.4 配置Entity2.5 配置Mapper 3 基础操作3.1 批量保存3.2 数据更新3.3 数据删除3.4 组合查询3.5 高亮查询3.6 统计查询 4 整合异常4…

prize_p1

文章目录 解题过程代码审计思路问题解决数组绕过preg_match__destruct的触发修改phar文件以及签名phar://支持的后缀 题解方法一&#xff08;数组绕过&#xff09;方法二&#xff08;gzip绕过&#xff09; 解题过程 源代码 <META http-equiv"Content-Type" conte…

AI文本创作在百度App发文的实践

作者 | 内容生态端团队 导读 大语言模型&#xff08;LLM&#xff09;指包含数百亿&#xff08;或更多&#xff09;参数的语言模型&#xff0c;这些模型通常在大规模数据集上进行训练&#xff0c;以提高其性能和泛化能力。在内容创作工具接入文心一言AI能力后&#xff0c;可以为…

论文复现--lightweight-human-pose-estimation-3d-demo.pytorch(单视角多人3D实时动作捕捉DEMO)

分类&#xff1a;动作捕捉 github地址&#xff1a;https://github.com/Daniil-Osokin/lightweight-human-pose-estimation-3d-demo.pytorch 所需环境&#xff1a; Windows10&#xff0c;conda 4.13.0&#xff1b; 目录 conda环境配置安装Pytorch全家桶安装TensorRT&#xff08;…

C++设计模式_05_Observer 观察者模式

接上篇&#xff0c;本篇将会介绍C设计模式中的Observer 观察者模式&#xff0c;和前2篇模板方法Template Method及Strategy 策略模式一样&#xff0c;仍属于“组件协作”模式。Observer 在某些领域也叫做 Event 。 文章目录 1. 动机&#xff08; Motivation&#xff09;2. 代码…

红帽 RHEL 源码限制成契机,AlmaLinux 获捐更可“做自己”

红帽在两个月前发布公告声称&#xff0c;将限制对 Red Hat Enterprise Linux (RHEL) 源代码的访问&#xff0c;早前曾报道&#xff0c;此举导致 AlmaLinux 、Rocky Linux 等 Linux 发行版未来发展严重受阻。 对于这一决策&#xff0c;AlmaLinux OS 基金会主席 Benny Vasquez 此…

few shot目标检测survey paper笔记(整体概念)

paper: Few-Shot Object Detection: A Comprehensive Survey (CVPR2021) 深度学习提高了目标检测的精度&#xff0c;但是它需要大量的训练数据。 对于训练数据集中没有见过的目标&#xff0c;是检测不了的&#xff0c;所以就限制了在实际中的应用。 如果想让模型去识别新的目标…

element-table 行的拖拽更改顺序(无需下载sortableJs

样例展示&#xff1a;vueelement 通过阅读element文档我们发现element并不提供拖拽相关的api 本博客通过element提供的行类名 注册函数 实现行与行的拖拽 1.设置el-table 的行样式类名 这里是用的是 function <el-table:data"outputData":row-class-name&qu…

H.265 视频在浏览器中的播放问题探究

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f405;&#x1f43e;猫头虎建议程序员必备技术栈一览表&#x1f4d6;&#xff1a; &#x1f6e0;️ 全栈技术 Full Stack: &#x1f4da…

2023/9/12 -- C++/QT

作业 实现一个图形类&#xff08;Shape&#xff09;&#xff0c;包含受保护成员属性&#xff1a;周长、面积&#xff0c; 公共成员函数&#xff1a;特殊成员函数书写 定义一个圆形类&#xff08;Circle&#xff09;&#xff0c;继承自图形类&#xff0c;包含私有属性&#xf…

X86_64函数调用汇编程序分(2)

X86_64函数调用汇编程序分&#xff08;2&#xff09; 1 X86_64寄存器使用标准2 leaveq和retq指令2.1 leaveq2.2 retq 3 执行leaveq和retq之后栈的结构3.1 执行leaveq之后栈的结构3.1.1 test_fun_b函数执行leaveq之前的栈结构示意图3.1.2 test_fun_b函数执行leaveq之后的栈结构示…

Charles的Map Remote功能

1、charles的Map Remote功能&#xff08;指定的网络请求重定向到另一个网址&#xff09;&#xff0c;说白了就是你本来要请求A接口拿数据&#xff0c;重定向后&#xff0c;你实际请求的是B接口&#xff0c;拿到的是B接口返回的数据。 入口Tools->Map Remote 本次测试过程中…