Amuse:.NET application for stable diffusion

目录

Welcome to Amuse!

Features

Why Choose Amuse?

Key Highlights

Paint To Image

Text To Image

Image To Image

Image Inpaint

Model Manager

Hardware Requirements

Compute Requirements

Memory Requirements

System Requirements

Realtime Requirements


Welcome to Amuse!

Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.

Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.

Experience the power of AI without compromise


Features

  • Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.

  • Text To Image: Generate stunning images from text descriptions with AI-powered creativity.

  • Image To Image: Transform images seamlessly using advanced machine learning models.

  • Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.

  • Model Management: Install, download and manage all your models in a simple user interafce.

Amuse provides compatibility with a diverse set of models, including

  • StableDiffusion 1.5
  • StableDiffusion Inpaint
  • SDXL
  • SDXL Inpaint
  • SDXL-Turbo
  • LatentConsistency
  • LatentConsistency XL
  • Instaflow

Why Choose Amuse?

Amuse isn’t just a tool; it’s a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.

Key Highlights

  • Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.

  • Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.

  • Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.

Amuse is not about building or deploying; it’s about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.


Paint To Image

Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it’s digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.

Paint To Image

Text To Image

Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images

Text To Image

Image To Image

Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more

Image To Image

Image Inpaint

Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It’s used for tasks like photo restoration and object removal, creating seamless and convincing results.

Image Inpaint

Model Manager

Discover the simplicity of our Model Manager – your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.

Hardware Requirements

Compute Requirements

Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse

DeviceRequirement
CPUAny modern Intel/AMD
AMD GPURadeon HD 7000 series and above
IntelHD Integrated Graphics and above (4th-gen core)
NVIDIAGTX 600 series and above.

Memory Requirements

AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse

ModelDevicePrecisionRAM/VRAM
Stable DiffusionGPU16~4GB
Stable DiffusionCPU/GPU32~8GB
SDXLCPU/GPU32~18GB

System Requirements

Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.

BuildDeviceRequirements
CPUCPUNone
DirectMLCPU, AMD GPU, Nvidia GPUAt least Windows10
CUDANvidia GPUCUDA 11 and cuDNN toolkit
TensorRTNvidia GPUCUDA 11 , cuDNN and TensorRT libraries

Realtime Requirements

Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards

DeviceModelFPS
GTX 2080LCM_Dreamshaper_v7_Olive_Onnx1-2
RTX 3090LCM_Dreamshaper_v7_Olive_Onnx3-4

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/773013.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Electron 入门 - 创建应用的全流程 - npm 踩坑版

说明 本文记录一下,使用Electron创建一个简单的客户端应用的全流程。 在官方文档的基础上,针对依赖安装过程中出现的异常,进行了补充,确保可以正常的创建应用。 创建步骤 0、校验node版本 官方文档建议使用 最新版本的 NodeJS …

Codigger用户篇:安全、稳定、高效的运行环境(一)

在当今数字化时代,个人数据的安全与隐私保护显得尤为重要。为了满足用户对数据信息的安全需求,我们推出Codigger分布式操作系统,它提供了一个运行私有应用程序的平台,旨在为用户提供一个安全、稳定、高效的私人应用运行环境。Codi…

html 元素宽度自适应 占据剩余宽度

弹性盒实现 父元素设置display: flex; 需要自适应宽度的子元素设置flex: 1; <html lang"en"> <head><style>*{margin: 0;padding: 0;}.main{display: flex;}.box1,.box2{width: 100px;height: 200px;}.box1{background: rgb(134 187 233);}.box2…

【javaWeb 第五篇】后端-Http协议学习

HTTP协议 HTTP概述HTTP-请求数据格式HTTP响应格式HTTP-协议解析 HTTP概述 Hyper Text Transfer Protocol,超文本传输协议&#xff0c;规定了浏览器和服务器之间的数据传输规则 简述概念就是&#xff0c;浏览器需要向服务器发送请求&#xff0c;想要得到服务器中的数据&#xff…

2014年认证杯SPSSPRO杯数学建模B题(第一阶段)位图的处理算法全过程文档及程序

2014年认证杯SPSSPRO杯数学建模 B题 位图的处理算法 原题再现&#xff1a; 图形&#xff08;或图像&#xff09;在计算机里主要有两种存储和表示方法。矢量图是使用点、直线或多边形等基于数学方程的几何对象来描述图形&#xff0c;位图则使用像素来描述图像。一般来说&#…

React组件如何通信

组件之间的通信,有四种类型: 父组件向子组件传递子组件向父组件传递兄弟组件之间传递父组件向子组件传递 由于React有单向数据流动的特性,所以父组件向子组件传递是最常见的方式。 父组件在调用子组件的时候,在组件标签内传递参数,子组件通过props属性获取父组件传递过来…

Share-ChatGPT官网UI/文件上传/联网搜索/GPTS 一并同步

地址&#xff1a;Share-ChatGPT 文章目录 界面UI&#xff0c;GPTS&#xff0c;读论文&#xff0c;数据分析&#xff0c;写论文视频演示仓库地址 界面 支持多账号同时管理&#xff0c;合理利用资源&#xff1a; UI&#xff0c;GPTS&#xff0c;读论文&#xff0c;数据分析&a…

【node】Missing script start or file server.js

错误 项目中没有找到启动脚本 start 或者 server.js 文件。pnpm start 命令默认会去寻找 start 脚本或者 server.js 文件来启动应用&#xff0c;但是在你的项目中没有找到这些文件&#xff0c;所以报错了。 $ pnpm startERR_PNPM_NO_SCRIPT_OR_SERVER  Missing script start…

论文篇06-论文范文-论基于架构的软件设计方法ABSD及应用(2024年软考高级系统架构设计师冲刺知识点总结系列文章)

试题 试题:论基于架构的软件设计方法(ABSD)及应用 基于架构的软件设计(Architecture-Based Software Design,ABSD)方法以构成软件架构的商业、质量和功能需求等要素来驱动整个软件开发过程。ABSD是一个自顶向下,递归细化的软件开发方法,它以软件系统功能的分解为基础…

Springboot vue elementui 在线考试系统案例源码

Springboot vue elementui 在线考试系统案例源码 链接地址

Go语言学习Day3:数据类型、运算符与流程控制

名人说&#xff1a;莫愁千里路&#xff0c;自有到来风。 ——钱珝 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 1、数据类型①布尔类型②整型③浮点型④string⑤类型转换 2、运算符①算术运算符②逻辑运算符③关…

基于微信小程序电影院订票选座系统 (后台JSP+JDBC+Mysql)答辩常规问题和如何回答(答辩指导)

博主介绍&#xff1a;黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者&#xff0c;CSDN博客专家&#xff0c;在线教育专家&#xff0c;CSDN钻石讲师&#xff1b;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程&#xff…

竞赛 python 爬虫与协同过滤的新闻推荐系统

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python 爬虫与协同过滤的新闻推荐系统 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;4分 该项目较为新颖&…

Go-Gin-Example 第八部分 优化配置接口+图片上传功能

文章目录 前情提要本节目标 优化配置结构讲解落实修改配置文件优化配置读取及设置初始化顺序第一步 验证 抽离file 实现上传图片接口图片名加密封装image的处理逻辑编写上传图片的业务逻辑增加图片上传的路由 验证实现前端访问 http.FileServerr.StaticFS修改文章接口新增、更新…

Spark RDD、DataFrame和DataSet的区别

Spark RDD、DataFrame和DataSet的区别 在比较这三者的区别之前&#xff0c;先看看他们各自的定义是什么。 Spark RDD RDD是一种弹性分布式数据集&#xff0c;是一种只读分区数据。它是spark的基础数据结构&#xff0c;具有内存计算能力、数据容错性以及数据不可修改特性。 S…

[CISCN2019 华东北赛区]Web2

[CISCN2019 华东北赛区]Web2 随便注册一个登录&#xff0c;发现 还有反馈页面&#xff0c;一看就知道大概率是xss&#xff0c;应该是为了得到管理员cookie扫描了一下&#xff0c;果然有admin.php后台登录 buu可以连接访问外网了&#xff0c;所以内部的xss平台关闭了&#xff0…

静态住宅IP好用吗?怎么选择?

在进行海外 IP 代理时&#xff0c;了解动态住宅 IP 和静态住宅 IP 的区别以及如何选择合适的类型非常重要。本文将介绍精态住宅 IP 特点和&#xff0c;并提供选择建议&#xff0c;帮助您根据需求做出明智的决策。 静态住宅 IP 的特点 静态住宅 IP 是指 IP 地址在一段时间内保…

深度理解文件操作

目录 文件 文件名&#xff1a; 标准流 文件指针 文件的打开和关闭 文件的顺序读写&#xff1a; 使用部分 文件的打开和关闭 文件 文件分两种&#xff0c;第一种是程序文件&#xff0c;后一种是数据文件。 程序文件&#xff1a;包括源程序文件&#xff08;后缀为.c&…

如何使用WordPress插件保护网站的安全

前段时间我们的网站受到了黑客的攻击&#xff0c;网站丢失了一些重要的数据&#xff0c;为了防止这种情况的再次发生&#xff0c;我们准备将网站全部迁移到高防服务器&#xff0c;经过一番对比后&#xff0c;我们选择了Hostease提供的高防服务器。它可以有效地抵御各种类型的网…

银行单元化架构体系介绍

1.背景 自2018年以来&#xff0c;受“华为、中兴事件”影响&#xff0c;我国科技受制于人的现状对国家稳定和经济发展都提出了严峻考验。目前我国IT架构体系严重依赖国外产品&#xff0c;金融行业尤其明显。大部分传统银行的关键账务系统都架设在IBM的大型机、小型机之上&…