pytorch代码中optimizer.step()和scheduler.step()有什么区别

optimizer.step()通常用在每个patch_size之中(一个patch_size的数据更新一次模型参数),而scheduler.step()通常用在epoch里面,但是不绝对,可以根据具体的需求来做。只有用了optimizer.step(),模型才会更新,而scheduler.step()是对lr进行调整。

  • optimizer:根据反向传播的梯度信息来更新网络参数,以降低loss
  • scheduler.step(): 更新优化器的学习率,一般按照epoch为单位进行更新
一个是用于更新模型参数的,一个是用于更新学习率的
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import LambdaLR
import matplotlib.pyplot as pltinitial_lr = 0.1class model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)def forward(self, x):pass# 实例化
net_1 = model()# 实例化一个Adam优化器
optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)# 实例化LambdaLR对象,lr_lambda是更新函数
scheduler_1 = LambdaLR(optimizer_1, lr_lambda=lambda epoch: 1/(epoch+1))# 初始lr。optimizer_1.defaults保存了初始参数
print("初始化的学习率:", optimizer_1.defaults['lr'])lr_list = []
for epoch in range(1, 11):#训练optimizer_1.zero_grad()optimizer_1.step()# 由于只给optimizer传了一个网络,所以optimizer_1.param_groups长度为1print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr']))lr_list.append(optimizer_1.param_groups[0]['lr'])# 更新学习率,一个epoch更新一次scheduler_1.step()# 画出lr的变化
plt.plot(list(range(1, 11)), lr_list)
plt.xlabel("epoch")
plt.ylabel("lr")
plt.title("learning rate's curve changes as epoch goes on!")
plt.show()输出:
初始化的学习率: 0.1
第1个epoch的学习率:0.100000
第2个epoch的学习率:0.050000
第3个epoch的学习率:0.033333
第4个epoch的学习率:0.025000
第5个epoch的学习率:0.020000
第6个epoch的学习率:0.016667
第7个epoch的学习率:0.014286
第8个epoch的学习率:0.012500
第9个epoch的学习率:0.011111
第10个epoch的学习率:0.010000

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/772149.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习】无监督学习算法之:K均值聚类

K均值聚类 1、引言2、K均值聚类2.1 定义2.2 原理2.3 实现方式2.4 算法公式2.4.1 距离计算公式2.4.1 中心点计算公式 2.5 代码示例 3、总结 1、引言 小屌丝:鱼哥, K均值聚类 我不懂,能不能给我讲一讲? 小鱼:行&#xf…

latex在写算法`\For` 和 `\EndFor` 以及 `FOR` 和 `\ENDFOR` ,报错Undefined control sequence.

这里写目录标题 1. 错误原因2. 进行改正3. 爱思唯尔期刊与施普林格期刊对于算法的格式不太一样,不能直接套用总结 1. 错误原因 我在算法中使用\For,\EndFor 2. 进行改正 换成FOR,\ENDFOR 3. 爱思唯尔期刊与施普林格期刊对于算法的格式不太…

CMake学习笔记(一)一个最简单的CMakeLists嵌套示例

目录 1 mkdir project_macro 2 在project_marco中建立CMakeLists.txt 3 建立专门的src文件夹 4 在src中添加main.cpp和CMakeLists.txt 5 回到project_macro目录,建立build文件夹 6 进入build 文件夹,开始cmake 7 在build文件夹里执行make指令 8 …

Softmax到底行还是列

对于二维张量,飞话不多说,直接看代码 input_tensor torch.tensor([[2,3,5],[2,2,2],[3,1,3]], dtypetorch.float32) # input_tensor torch.rand((1000,1000,100)) print(input_tensor) print("*"*40) print("沿着dim1,计算…

直播行业网络安全建设

一、引言 直播行业近年来蓬勃发展,吸引了大量用户和资本的关注。然而,随着行业的壮大,网络安全问题也日益凸显。构建一个安全、稳定的直播行业网络对于保障用户权益、维护行业秩序具有重要意义。本文将详细探讨直播行业安全网络的构建与保障…

MongoDB知识

1、部署MongoDB (1)new好一个mongo文件之后执行 (出现mongodb.key)记得放行端口 openssl rand -base64 666 > mongodb.key (2)放到一个docker-compose.yml之后docker-compose up -d执行 version: 3.…

JavaSE系统性总结全集(精华版)

目录 1. 面向对象(封装,继承,多态)详解 1.1 面向过程和面向对象的区别 1.2面向对象的三大特性 1.2.1 封装 1.2.2 继承 1.2.3 多态 1.2.4 方法重写和方法重载的区别(面试题) 1.2.5 访问权限修饰符分…

《自动机理论、语言和计算导论》阅读笔记:p5-p27

《自动机理论、语言和计算导论》学习第2天,p5-p27总结,总计23页。 一、技术总结 1.集合 (1)commutative law of union. (2)distribute law of union. 2.归纳法(induction) & 演绎法(deduction) (1)归纳法:从许多个别的事实或原理中…

代码随想录算法训练营第十六天| 104.二叉树的最大深度、559.n叉树的最大深度、111.二叉树的最小深度、222.完全二叉树的节点个数

系列文章目录 目录 系列文章目录104.二叉树的最大深度①递归法直接法(求深度,前序遍历)间接法(求高度,后序遍历) ②迭代法(层序遍历中有) 559.n叉树的最大深度①递归法间接法(后序遍历求高度&am…

canvas画带透明度的直线和涂鸦

提示&#xff1a;canvas画线 文章目录 前言一、带透明度的直线和涂鸦总结 前言 一、带透明度的直线和涂鸦 test.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content…

咕炮课堂Java架构师课程

课程介绍 主要针对1到5年及以上工作经验的开发人员&#xff0c;提供互联网行业热门技术的Java架构师专题培训&#xff0c;由业内技术大牛&#xff0c;行业及实战经验丰富的讲师进行技术分享。内容涵盖redis,mongodb,dubbo,zookeeper,kafka 高并发、高可用、分布式、高性能、并…

雪里温柔,水边明秀,不及Java 抽象类 和 Object类

本篇会加入个人的所谓‘鱼式疯言’ ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. &#x1f92d;&#x1f92d;&#x1f92d;可能说的不是那么严谨.但小编初心是能让更多人…

Collection与数据结构 顺序表与ArrayList

1. 线性表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构&#xff0c;常见的线性表&#xff1a;顺序表、链表、栈、队列… 线性表在逻辑上是线性结构&#xff0c;也就说是连续的一条直线。但是在…

A Novel Negative Sample Generating Method for KnowledgeGraph Embedding

摘要 为了有效地提取知识图中的关系和原因&#xff0c;将实体和关系编码到一个连续的低维语义空间中。在负样本生成阶段&#xff0c;大多数知识图嵌入方法更注重替换头或尾实体以提高训练效率&#xff0c;很少替换关系。这些负样本生成方法对关系预测的贡献不大。本文提出了一…

vue项目在本地源码方式启动和打包之后在nginx中代理有什么不同

Vue项目在本地源码方式启动和打包之后在Nginx中代理的主要区别在于开发环境与生产环境的配置、性能优化、安全性和部署流程等方面。以下是一些具体的差异点&#xff1a; 开发环境与生产环境&#xff1a; 本地源码启动通常是在开发环境中&#xff0c;使用Vue CLI的vue-cli-servi…

瑞吉外卖实战学习--登录过滤器和判断是否登录过

完善登录功能 1、创建自定义过滤器LoginCheckFiler1.1通过WebFilter创建过滤器1.2 验证是否可以拦截请求1.3 代码 2、在启动类加入注解ServletComponentScan 用来扫描过滤器触发所有的过滤器ServletComponentScan 3、完善过滤器的处理逻辑3.1判断是否需要是要放行的请求3.2判断…

鸿蒙OS应用示例:【数字滚动计时】

实现效果&#xff1a; 代码示例&#xff1a; RollingText.ets 组件封装 RollingText.ets 组件封装 /*** 滚动文字特效*/ Component export default struct RollingText {private num:numberprivate timerId: number -1State counter: number 0aboutToAppear() {this.timerId…

Git基础(25):Cherry Pick合并指定commit id的提交

文章目录 前言指定commit id合并使用TortoiseGit执行cherry-pick命令 前言 开发中&#xff0c;我们会存在多个分支开发的情况&#xff0c;比如dev&#xff0c;test, prod分支&#xff0c;dev分支在开发新功能&#xff0c;prod作为生产分支已发布。如果某个时候&#xff0c;我们…

3.26C++

定义一个矩形类&#xff08;Rectangle&#xff09;&#xff0c;包含私有成员&#xff1a;长(length)、宽&#xff08;width&#xff09;, 定义成员函数&#xff1a; 设置长度&#xff1a;void set_l(int l) 设置宽度&#xff1a;void set_w(int w) 获取长度&#xff1a;int…

【Linux】线程同步{死锁/线程同步相关接口/由浅入深理解线程同步}

文章目录 1.死锁1.1概念1.2死锁的必要条件 2.线程同步相关接口2.1pthread_cond_init/destroy()2.2int pthread_cond_wait2. 3linux下的条件变量及其作用2.4int pthread_cond_signal/broadcast();2.5Linux下 阻塞和挂起的异同2.6阻塞&#xff0c;挂起&#xff0c;和进程切换的关…