大模型时代的向量数据库:原理解析和应用案例

大家好,在人工智能领域,数据处理和加工的需求愈发增加。随着人们深入探索AI高级的应用,如图像识别、语音搜索和推荐引擎等,数据的复杂性也在不断地增加。此时传统的数据库存储方式已不能完全满足需求,向量数据库应运而生。

与传统数据库存储标量值不同,向量数据库专门设计用于处理多维数据点,也称为向量。这些向量在多个维度中表示数据,可以被视为在空间中指向特定方向和大小的箭头。

数字时代推动我们进入了由人工智能和机器学习为主导的时代,向量数据库已经成为存储、搜索和分析高维数据向量的不可或缺的工具。

1.向量数据库

向量数据库是一种专门用来存储多维向量表示特定特征或质量信息的数据库。

每个向量的维度数量可以在一定范围内有很大的变化,从几个到几千个不等,具体取决于数据的复杂性和细节。这些数据可以包括文本、图像、音频和视频等多种类型,通过使用机器学习模型、词嵌入或特征提取技术等各种过程将其转换为向量。

向量数据库的主要优势在于它能够快速和精确地按照向量的距离或相似性定位和检索数据。这意味着可以基于语义或上下文相关性进行搜索,而不仅仅依赖于传统数据库中的精确匹配或预设标准。

例如,使用向量数据库,可以:

  • 根据旋律和节奏搜索与特定歌曲吻合的歌曲。

  • 发现与特定文章主题和观点相吻合的文章。

  • 根据特定设备的特征和评论,查找相似的设备。

2.向量数据库工作原理

图片

传统数据库以表格形式存储单词和数字等简单数据。而矢量数据库处理的是称为矢量的复杂数据,并使用独特的方法进行搜索。

传统数据库查找精确匹配,而向量数据库查找最相似的匹配。

矢量数据库使用特殊的搜索技术,称为近似最近邻(Approximate Nearest Neighbor,ANN),其中包括哈希和基于图的搜索方法。

为了真正理解向量数据库的工作原理以及它与传统关系数据库(如SQL)的区别,首先需要理解嵌入的概念。

无结构的数据,如文本、图像和音频,缺乏预定义的格式,对传统数据库造成挑战。为了在人工智能和机器学习应用中利用这些数据,必须将其转换为数值表示。

嵌入就像给每个项目,无论是单词、图像还是其他东西,分配一个独特的代码,捕捉其意思或本质。这个代码有助于计算机更有效、更有意义地理解和比较这些项目。就像将一本复杂的书转换为一段包含要点的简短摘要。

这个嵌入过程通常是使用专门设计的神经网络来完成的。例如,词嵌入将单词转换为向量,以便具有相似含义的单词在向量空间中更接近。这种转换使算法能够理解和识别项目之间的关系和相似性。

基本上,嵌入就像一座桥梁,将非数值数据转换为机器学习模型可以处理的形式,使其更有效地发现和识别数据中的模式和关系。

图片

嵌入使用深度学习模型将无结构数据转换为向量

3.向量数据库案例

图片

大语言模型应用中向量数据库的案例

向量数据库由于其独特的功能,在实施 "近似最近邻 "搜索方面的高效性,向量数据库已在多个行业中占据一席之地。以下是它们的各种应用:

3.1 增强零售体验

在繁荣的零售行业,向量数据库正在重塑消费者的购物方式。向量数据库可以创建先进的推荐系统,提供个性化的购物体验。例如,在线购物者能收到根据历史购买、产品属性、用户行为和偏好等因素的产品建议。

3.2 金融数据分析

金融领域充斥着错综复杂的模式和趋势。向量数据库擅长分析这些密集的数据,帮助金融分析师发现关键模式,从而有助于投资策略。通过识别微妙的相似性或偏差,它们可以预测市场行情并制定更为明智的投资蓝图。

3.3 医疗保健

在医疗保健领域,个性化非常重要。通过分析基因组序列,向量数据库可以提供更多量身定制的医疗方案,确保医疗解决方案更符合个人基因构成。

3.4 增强自然语言处理(NLP)应用

在数字世界中,聊天机器人和虚拟助手的数量激增。这些基于人工智能的实体很大程度上依赖于对人类语言的理解。通过将大量文本数据转换为向量,这些系统可以更准确地理解和回答人类查询。例如,Talkmap公司利用实时自然语言理解,使客户与代理的交互更加顺畅。

3.5 媒体分析

从医疗扫描到监控录像,准确比较和理解图像的能力至关重要。向量数据库通过关注图像的基本特征来简化此过程,过滤噪声和失真。例如,在交通管理中,可以快速分析视频流的图像,来优化交通流量,提高公共安全。

3.6 异常检测

发现异常与识别相似性同等重要。尤其是在金融和安全领域,发现异常可以预防欺诈或预先防范潜在的安全漏洞。向量数据库在这个领域提供了增强的功能,使检测过程更快、更精确。

4.优秀的向量数据库特征

向量数据库已经成为有效浏览大量无结构数据(如图像、视频和文本)的强大工具,无需依赖于人工生成的大量标签或标记。当它们的功能与先进的机器学习模型相结合时,有可能给从电子商务到制药业等众多领域带来革命性的变化。以下是向量数据库改变游戏规则的一些突出特征:

4.1 可扩展性和适应性

一个强大的向量数据库可以确保随着数据的增长(达到数百万或甚至数十亿个元素),能够轻松地在多个节点上进行扩展。

最佳的向量数据库具有适应性,支持用户根据插入率、查询率和基础硬件的变化来调整系统。

4.2 多用户支持和数据隐私

支持多用户是数据库的一项基本需求。然而,简单地为每个用户创建一个新的向量数据库并不高效。相反,向量数据库应该优先考虑数据隔离。这意味着在一个数据集中,任何更改只有在所有者有意分享之前,对其他人是不可见的。这种方法不仅支持多用户,还确保了数据的隐私和安全。

4.3 全面的API套件

真正有效的数据库提供一套完整的API和SDK。这可确保系统能与各种应用程序进行交互,并能对其进行有效管理。领先的向量数据库(如Pinecone)提供Python、Node、Go和Java等多种编程语言的SDK,确保开发和管理的灵活性。

4.4 用户友好界面

向量数据库中的用户友好界面起着关键作用,可以减少与新技术相关的陡峭学习曲线。这些界面提供视觉概览、易于导航和访问可能被隐藏起来的功能,从而提高使用效率和易用性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/772100.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

su怎么做展厅模型---模大狮模型网

要在SketchUp中创建展厅模型,你可以按照以下基本步骤进行: 绘制基本结构: 使用SketchUp的绘图工具(线条、矩形、圆形等)来创建展厅的基本结构,包括墙壁、地板和天花板等。确保按照实际尺寸和比例进行绘制。 添加家具和展品&…

【C++教程从0到1入门编程】第十三篇:STL中list类的模拟实现

一、list的模拟实现 #include<iostream> #include<assert.h> #pragma once namespace jyr {template<class T>struct _list_node{_list_node<T>* _next;_list_node<T>* _prev;T _data;_list_node(const T& val T()):_next(nullptr), _prev(…

Zabbix 配置使用

目录 配置流程 添加组机组 添加模板 添加主机 配置图形 配置大屏 Monitoring 配置地图 最新数据 故障 使用IT服务 使用报表 资产管理 全局搜索 导入导出 用户权限 用户组权限 用户 匿名用户 调试模式 与 LDAP 对接 维护模式 故障确认 批量更新 配置流程…

【办公类-21-10】三级育婴师 视频转文字docx(等线小五单倍行距),批量改成“宋体小四、1.5倍行距、蓝色字体、去掉五分钟”

作品展示 背景需求 今天将最后3个育婴师操作视频做整理 第1步&#xff1a;视频MP4转MP3 【办公类-40-01】20240311 用Python将MP4转MP3提取音频 &#xff08;家长会系列一&#xff09;-CSDN博客文章浏览阅读393次&#xff0c;点赞9次&#xff0c;收藏6次。【办公类-40-01】20…

[项目前置]websocket协议

websocket协议介绍 WebSocket 协议是一种在单个 TCP 连接上进行全双工通讯的协议。 WebSocket 使得客户端和服务器之间的数据交换变得更简单&#xff0c;允许服务器主动向客户端推送数据。它在 2011 年成为国际标准&#xff0c;现在被所有现代浏览器支持。WebSocket 设计用于…

iNet Network Scanner Mac 网络扫描工具

iNet Network Scanner for Mac是一款功能强大的网络扫描工具&#xff0c;专为Mac用户设计。它提供了全面而深入的网络分析功能&#xff0c;使用户能够轻松获取Mac连接的网络和设备的详细信息。 软件下载&#xff1a;iNet Network Scanner Mac v3.1.0激活版 这款软件具备多种扫描…

业务服务:xss攻击

文章目录 前言一、使用注解预防1. 添加依赖2. 自定义注解3. 自定义校验逻辑4. 使用 二、使用过滤器1. 添加配置2. 创建配置类3. 创建过滤器4. 创建过滤器类5. 使用 前言 xss攻击时安全领域中非常常见的一种方法&#xff0c;保证我们的系统安全是非常重要的 xss攻击简单来说就…

TCP(socket 套接字)编程 1

一、TCP套接字编程架构如下 二、相关代码实现 1、服务器端代码 package com.company;import java.io.IOException; import java.net.InetSocketAddress; import java.net.ServerSocket; import java.net.Socket;public class Main {public static void main(String[] args) {…

javaWeb健身房管理系统

一、简介 随着人们健康意识的增强和生活水平的提高&#xff0c;健身已经成为了现代人生活中不可或缺的一部分。为了更好地管理健身房的日常运营&#xff0c;我们设计并开发了一款基于 JavaWeb 的健身房管理系统。本系统采用了最新的技术&#xff0c;包括 Spring Boot、MyBatis…

nacos集群搭建实战

集群结构图 初始化数据库 Nacos默认数据存储在内嵌数据库Derby中&#xff0c;不属于生产可用的数据库。官方推荐的使用mysql数据库&#xff0c;推荐使用数据库集群或者高可用数据库。 首先新建一个数据库&#xff0c;命名为nacos&#xff0c;而后导入下面的SQL&#xff08;直…

智慧工地源码 数字孪生可视化大屏 工地管理平台系统源码 多端展示(PC端、手机端、平板端)

智慧工地源码 数字孪生可视化大屏 工地管理平台系统源码 多端展示&#xff08;PC端、手机端、平板端&#xff09; 智慧工地系统多端展示&#xff08;PC端、手机端、平板端&#xff09;;数字孪生可视化大屏&#xff0c;一张图掌握项目整体情况;使用轻量化模型&#xff0c;部署三…

ubuntu22.04配置Azure Kinect DK深度相机

一.安装SDK 今天我来配置一下微软公司的Azure Kinect DK深度相机,以前在ubuntu18.04上配置过,因为官方说唯一支持linux版本是18.04,所以在18.04中配置还算顺利 but这不代表不可以在更高版本的ubuntu中使用,只不过需要自己去多配置一些东西 apt 源安装 更新源: c…

25.7 MySQL 数据库和表的基本操作

1. 基础知识 1.1 一条数据的存储过程 存储数据确实是处理数据的基石, 只有确保数据被准确无误且有条理地存储, 我们才能对其进行深入的处理和细致的分析. 否则, 这些数据就像是一团毫无章法的乱麻, 让我们难以捉摸其内在的逻辑和价值.那么, 如何才能够将用户那些与经营紧密相关…

VITIS更新硬件平台

VITIS硬件平台更新以后如何重新导入 在之前建立的硬件平台上右击&#xff0c;选择Update Hardware Specification&#xff0c;选择最新导出的硬件平台文件&#xff1b; 重建板级支持包 选择复位重建BSP源文件&#xff0c;俩个地方的BSP都Reset一下&#xff0c;然后Build&…

Transformer的前世今生 day08(Positional Encoding)

前情提要 Attention的优点&#xff1a;解决了长序列依赖问题&#xff0c;可以并行。Attention的缺点&#xff1a;开销变大了&#xff0c;而且不存在位置关系为了解决Attention中不存在位置关系的缺点&#xff0c;我们通过位置编码的形式加上位置关系 Positional Encoding&…

LinkedIn账号为什么被封?被封后如何解决?

近期会有一些小伙伴说自己遇到了帐号无法登录的情况&#xff0c;其实出现领英帐号被封号(被限制登录)主要会有两类情况&#xff0c;今天就给大家分享一下如果被封该如何解决&#xff0c;强烈建议收藏。 在电脑领英官网或者手机领英APP上&#xff0c;输入领英帐号密码点击登录后…

HCIP的学习(4)

GRE和MGRE VPN---虚拟专用网络。指依靠ISP&#xff08;运营商&#xff09;或其他公有网络基础设施上构建的专用的安全数据通信网络。该网络是属于逻辑上的。​ 核心机制—隧道机制&#xff08;封装技术&#xff09; GRE—通用路由封装 ​ 三层隧道技术&#xff0c;并且是属于…

代码随想录 图论

目录 797.所有可能得路径 200.岛屿数量 695.岛屿的最大面积 1020.飞地的数量 130.被围绕的区域 417.太平洋大西洋水流问题 827.最大人工岛 127.单词接龙 841.钥匙和房间 463.岛屿的周长 797.所有可能得路径 797. 所有可能的路径 中等 给你一个有 n 个节点的…

什么是V R美术馆|V R互动体验店加盟|虚拟现实元宇宙

VR美术馆是利用虚拟现实&#xff08;VR&#xff09;技术构建的数字化美术馆&#xff0c;通过虚拟展厅和虚拟展览等形式展示艺术作品、举办艺术展览&#xff0c;为用户提供一种沉浸式的艺术体验。用户可以通过穿戴VR头显等设备&#xff0c;在虚拟环境中自由浏览各种艺术作品&…

20240319-1-过拟合与欠拟合

过拟合欠拟合面试题 1. 如何理解高方差与低偏差? 模型的预测误差可以分解为三个部分: 偏差(bias)&#xff0c; 方差(variance) 和噪声(noise). 偏差 偏差度量了模型的期望预测与真实结果的偏离程度&#xff0c; 即刻画了学习算法本身的拟合能力。偏差则表现为在特定分布上…