YOLOv9代码解读[01] readme解读

文章目录

  • YOLOv9
    • COCO数据集上指标:
    • 环境安装
    • 训练
    • 验证
    • 重参数化 Re-parameterization
    • 推断
    • 相关链接

YOLOv9

paper: YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
github: https://github.com/WongKinYiu/yolov9
在这里插入图片描述

COCO数据集上指标:

在这里插入图片描述

环境安装

docker环境

# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx# pip install required packages
pip install seaborn thop# go to code folder
cd /yolov9

训练

单GPU训练

# train yolov9 models
python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15# train gelan models
# python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

多GPU训练

# train yolov9 models
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15# train gelan models
# python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

验证

# evaluate converted yolov9 models
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val# evaluate yolov9 models
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val# evaluate gelan models
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val

重参数化 Re-parameterization

reparameterization.ipynb

推断

# inference converted yolov9 models
python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c-converted.pt' --name yolov9_c_c_640_detect# inference yolov9 models
# python detect_dual.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c.pt' --name yolov9_c_640_detect# inference gelan models
# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './gelan-c.pt' --name gelan_c_c_640_detect

相关链接


Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309QAT TensirRT: https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350Comet logging: https://github.com/WongKinYiu/yolov9/pull/110MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760Conda environment: https://github.com/WongKinYiu/yolov9/pull/93AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/770820.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络安全笔记-day8,DHCP部署

DHCP部署与安全 全称(Dynamic Host Configura Protocol)动态主机配置协议 DHCP原理 DHCP协议_科来测试dhcp网络包-CSDN博客🔍 注意的是利用广播地址发送包 ACK(确认) 如果DHCP服务器损坏,则在87.5%时…

Open WebUI大模型对话平台-适配Ollama

什么是Open WebUI Open WebUI是一种可扩展、功能丰富、用户友好的大模型对话平台,旨在完全离线运行。它支持各种LLM运行程序,包括与Ollama和Openai兼容的API。 功能 直观的界面:我们的聊天界面灵感来自ChatGPT,确保了用户友好的体验。响应…

线性代数 - 应该学啥 以及哪些可以交给计算机

AI很热,所以小伙伴们不免要温故知新旧时噩梦 - 线代。 (十几年前,还有一个逼着大家梦回课堂的风口,图形学。) 这个真的不是什么美好的回忆,且不说老师的口音,也不说教材的云山雾绕,单…

【考研数学二】线性代数重点笔记

目录 第一章 行列式 1.1 行列式的几何意义 1.2 什么是线性相关,线性无关 1.3 行列式几何意义 1.4 行列式求和 1.5 行列式其他性质 1.6 余子式 1.7 对角线行列式 1.8 分块行列式 1.9 范德蒙德行列式 1.10 爪形行列式的计算 第二章 矩阵 2.1 初识矩阵 2…

查看VMWare ESXi 6.5/6.7服务器上 GPU直通的状态

VMWare ESXi 6.5/6.7服务器状态 查看配置参数

生物信息学 GO、KEGG

文章目录 北大基因本体论分子通路KEGGGO注释分子通路鉴定 关于同源 相似性 b站链接:北大课程 概述了当前生物信息学领域中几个重要的概念和工具,介绍基因本体论(Gene Ontology, GO)、分子通路知识库KEGG(Kyoto Encyclo…

纯前端调用本机原生Office实现Web在线编辑Word/Excel/PPT,支持私有化部署

在日常协同办公过程中,一份文件可能需要多次重复修改才能确定,如果你发送给多个人修改后再汇总,这样既效率低又容易出错,这就用到网页版协同办公软件了,不仅方便文件流转还保证不会出错。 但是目前一些在线协同Office…

go的for循环应该这么用

目录 目录 一:介绍 1: for流程控制 2:for-range流程控制 二:实例展示 1://按照一定次数循环 2://无限循环 3: //循环遍历整数、各种容器和通道 4:遍历通道 5://指针数组循环 6&…

Pillow教程05:NumPy数组和PIL图像的相互转化

---------------Pillow教程集合--------------- Python项目18:使用Pillow模块,随机生成4位数的图片验证码 Python教程93:初识Pillow模块(创建Image对象查看属性图片的保存与缩放) Pillow教程02:图片的裁…

SpringBoot 文件上传(三)

之前讲解了如何接收文件以及如何保存到服务端的本地磁盘中: SpringBoot 文件上传(一)-CSDN博客 SpringBoot 文件上传(二)-CSDN博客 这节讲解如何利用阿里云提供的OSS(Object Storage Service)对象存储服务保存文件。…

vite5+vue3+ import.meta.glob动态导入vue组件

import.meta.glob 是 Vite 提供的一个特殊功能,它允许你在模块范围内动态地导入多个模块。这在处理大量的文件,如组件、页面或其他模块时特别有用,特别是当你需要根据某些条件或模式来动态加载它们时。 1.创建需要动态导入的组件目录 假设你…

设计模式—观察者模式与发布订阅

观察者设计模式 观察者设计模式(Observer Design Pattern)是一种常用的软件设计模式,它是一种行为型模式。该模式用于定义对象之间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都将得到通知…

FTP 文件传输服务

FTP连接 控制连接:TCP 21,用于发送FTP命令信息 数据连接:TCP 20,用于上传、下载数据 数据连接的建立类型: 主动模式:服务端从 20 端口主动向客户端发起连接 被动模式:服务端在指定范围…

flask_restful数据解析

参数验证也叫参数解析 Flask-Restful 插件提供了类似 WTForms 来验证提交的数据是否合法 的包,叫做 reqparse 。 # Flask_RESTFUl数据解析 from flask import Flask,render_template from flask_restful import Api,Resource from flask_restful.reqparse import …

项目3-留言板

1.创建项目 记得将project type改为maven 将需要的包引入其中 更改版本号 引入MYSQL相关包记得进行配置!!! spring:datasource:url: jdbc:mysql://127.0.0.1:3306/mycnblog?characterEncodingutf8&useSSLfalseusername: rootpassword:…

用redis lua脚本实现时间窗分布式限流

需求背景: 限制某sql在30秒内最多只能执行3次 需求分析 微服务分布式部署,既然是分布式限流,首先自然就想到了结合redis的zset数据结构来实现。 分析对zset的操作,有几个步骤,首先,判断zset中符合rangeS…

使用JMeter进行梯度压测

使用JMeter进行梯度压测 梯度压测配置如下: 使用线程:5,然后循环5000次,共2.5万个样本使用线程:10,然后循环5000次,共5万个样本使用线程:15,然后循环5000次,共7.5万个样本使用线程:20&#xff…

Redis中的事件

事件 概述 Redis服务器是一个事件驱动程序:服务器需要处理以下两类事件: 1.文件事件(file event):Redis服务器通过套接字与客户端(或者其他Redis服务器)进行连接,而文件事件就是服务器对套接字操作的抽象。服务器与客户端(或者其他服务器)的通信会产生相应的文件…

上位机图像处理和嵌入式模块部署(qmacvisual自定义插件代码分析)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 qmacvisual里面的第三方插件主要由两部分组成,一部分是ExtensionLibrary,也就是插件的容器,这个是官方提供的&a…

【机器学习】贝叶斯上篇(详解)

深入理解贝叶斯学习:核心原理及应用全解析 在机器学习的领域内,贝叶斯学习作为一种强大的框架,使我们能够在不确定性条件下进行预测和决策。贝叶斯学习源于托马斯贝叶斯的工作,提供了一种概率论的学习方法,与传统的频…