elasticsearch version: 7.10.1
multi_match是Elasticsearch中的一种查询类型,允许在一个或多个字段上执行全文本搜索,并合并各个字段的结果得分。这种查询有助于实现跨多个字段的统一搜索体验。
语法
{"query": {"multi_match" : {"query": "搜索文本", // 要搜索的关键词或短语"fields": ["field1", "field2"], // 搜索涉及的字段列表"type": "best_fields", // (可选)匹配类型,默认是"best_fields",也可以是"most_fields"、"cross_fields"、"phrase"、"phrase_prefix"等"operator": "and", // (可选)查询词之间的关系,默认是"or",可以改为"and""analyzer": "standard", // (可选)使用的分析器"minimum_should_match": 1, // (可选)最少匹配的条件,默认是基于类型的不同有不同的计算规则"tie_breaker": 0.3, // (可选)交叉字段查询时,决定每个字段得分与整体得分之间关系的权重因子"boost": 2.0 // (可选)提升查询的权重,会影响相关度评分}}
}
query:要搜索的文本。
fields:一个字段名称列表,将在这些字段上执行全文搜索。
operator: and 搜索次需要全部匹配
type:定义匹配类型,不同类型的含义如下:
- best_fields:默认类型,选取匹配分数最高的那个字段的得分。
- most_fields:综合所有字段的得分。
- cross_fields:将所有字段当作一个大的字段来处理,进行跨字段的短语查询。
- phrase:强制执行短语匹配。
- phrase_prefix:类似于phrase,但是支持前缀匹配。
例题
索引创建
PUT /blog_posts
{"mappings": {"properties": {"title": {"type": "text"},"body": {"type": "text"},"tags": {"type": "keyword"}}}
}
文档插入
POST /blog_posts/_doc
{"title": "How to Use Elasticsearch for Full-text Search","body": "In this article, we explore the power of Elasticsearch as a distributed full-text search engine.","tags": ["Elasticsearch", "full-text search", "distributed systems"]
}POST /blog_posts/_doc
{"title": "Distributed Systems Design with Elasticsearch","body": "Learn about how Elasticsearch can be used in designing scalable and fault-tolerant distributed systems.","tags": ["Elasticsearch", "distributed systems", "design patterns"]
}POST /blog_posts/_doc
{"title": "Understanding Elasticsearch Aggregations","body": "Discover the power of Elasticsearch aggregations for data analysis and exploration.","tags": ["Elasticsearch", "aggregations", "data analytics"]
}POST /blog_posts/_doc
{"title": "Scaling Elasticsearch Clusters for High Performance","body": "Learn techniques for scaling Elasticsearch clusters to handle large volumes of data and high traffic loads.","tags": ["Elasticsearch", "cluster scaling", "performance optimization"]
}POST /blog_posts/_doc
{"title": "Introduction to Elasticsearch Relevance Scoring","body": "Explore how Elasticsearch calculates relevance scores for search results to improve user experience.","tags": ["Elasticsearch", "relevance scoring", "search algorithms"]
}POST /blog_posts/_doc
{"title": "Real-time Log Analytics with Elasticsearch and Logstash","body": "Configure Elasticsearch, Logstash, and Kibana (ELK Stack) for real-time log processing and visualization.","tags": ["Elasticsearch", "Logstash", "Kibana", "log analytics"]
}POST /blog_posts/_doc
{"title": "Securing Your Elasticsearch Cluster","body": "Implement security measures to protect your Elasticsearch cluster from unauthorized access and data breaches.","tags": ["Elasticsearch", "security", "access control"]
}POST /blog-posts/_doc/
{"title": "How to use Elasticsearch Multi-Match Queries","body": "In this article, we discuss various types of multi_match queries in Elasticsearch.","tags": ["elasticsearch", "full-text search", "queries"]
}POST /blog-posts/_doc/
{"title": "Exploring Phrase Matching in Elasticsearch","body": "Learn how phrase matching works in Elasticsearch and its application in multi_match queries.","tags": ["elasticsearch", "phrase matching"]
}
查询语句
GET /blog-posts/_search
{"query": {"multi_match" : {"query": "use Elasticsearch multi-match queries","fields": ["title^3", "body"],"type": "best_fields"}}
}
GET /blog-posts/_search
{"query": {"multi_match" : {"query": "Elasticsearch multi-match","fields": ["title", "body", "tags.keyword"],"type": "most_fields"}}
}
GET /blog-posts/_search
{"query": {"multi_match" : {"query": "\"use Elasticsearch\" multi match","fields": ["title", "body"],"type": "cross_fields"}}
}
GET /blog-posts/_search
{"query": {"multi_match" : {"query": "\"phrase matching\" in Elasticsearch","fields": ["title", "body"],"type": "phrase"}}
}
GET /blog-posts/_search
{"query": {"multi_match" : {"query": "phrase matc*","fields": ["title", "body"],"type": "phrase_prefix"}}
}