【数据结构】 Map和Set详解

文章目录

  • 🍀Map与Set的概念及场景
  • 🌳Map与Set模型介绍
  • 🎨Map 的使用
    • 📌Map说明
    • 📌Map.Entry<K, V>的说明
    • 📌Map 的常用方法说明
      • 🚨注意事项
      • 🚩TreeSet的使用
  • 🎋Set 的说明
    • ⚽常见方法说明
      • 🚨注意事项:
      • 🚩TreeMap使用案例
  • 😎哈希表
    • 🐱‍👤概念
  • 🧭冲突
    • 🎋冲突的概念
    • 🛫冲突避免
      • 🎄哈希函数设计避免冲突
        • 🚩直接定制法--(常用)
        • 🚩除留余数法--(常用)
        • 🚩平方取中法--(了解)
        • 🚩折叠法--(了解)
        • 🚩随机数法--(了解)
        • 🚩数学分析法--(了解)
      • 🐱‍🐉负载因子调节避免冲突
    • 🛬冲突解决
      • 🥎闭散列
        • 🎈线性探测
        • 🎈二次探测
      • 🐱‍👓开散列/哈希桶
    • 🚨冲突严重时的解决办法
  • 🏀哈希表性能分析
  • ⛩哈希java类集的关系
  • ⭕总结

🍀Map与Set的概念及场景

Map和set是一种专门用来进行搜索的容器或者数据结构,其搜索的效率与其具体的实例化子类有关。以前常见的
搜索方式有:

  1. 直接遍历,时间复杂度为O(N),元素如果比较多效率会非常慢
  2. 二分查找,时间复杂度为 ,但搜索前必须要求序列是有序的

上述排序比较适合静态类型的查找,即一般不会对区间进行插入和删除操作了,而现实中的查找比如:

  1. 根据姓名查询考试成绩
  2. 通讯录,即根据姓名查询联系方式
  3. 不重复集合,即需要先搜索关键字是否已经在集合中

可能在查找时进行一些插入和删除的操作,即动态查找,那上述两种方式就不太适合了,本节介绍的Map和Set是一种适合动态查找的集合容器

🌳Map与Set模型介绍

一般把搜索的数据称为关键字(Key),和关键字对应的称为值(Value),将其称之为Key-value的键值对,所以
模型会有两种:

  1. 纯 key 模型,比如:
  • 有一个英文词典,快速查找一个单词是否在词典中
  • 快速查找某个名字在不在通讯录中
  1. Key-Value 模型,比如:
  • 统计文件中每个单词出现的次数,统计结果是每个单词都有与其对应的次数:<单词,单词出现的次数>
  • 梁山好汉的江湖绰号:每个好汉都有自己的江湖绰号

Map中存储的就是key-value的键值对Set中只存储了Key

🎨Map 的使用

Map官方文档
在这里插入图片描述

📌Map说明

Map是一个接口类,该类没有继承自Collection,该类中存储的是<K,V>结构的键值对,并且K一定是唯一的,不能重复

📌Map.Entry<K, V>的说明

Map.Entry<K, V> 是Map内部实现的用来存放<key, value>键值对映射关系的内部类,该内部类中主要提供了<key, value>的获取,value的设置以及Key的比较方式
在这里插入图片描述
注意:Map.Entry<K,V>并没有提供设置Key的方法

📌Map 的常用方法说明

在这里插入图片描述

🚨注意事项

  1. Map是一个接口,不能直接实例化对象,如果要实例化对象只能实例化其实现类TreeMap或者HashMap

  2. Map中存放键值对的Key是唯一的,value是可以重复的

  3. 在TreeMap中插入键值对时,key不能为空,否则就会抛NullPointerException异常,value可以为空。但是HashMap的key和value都可以为空。

  4. Map中的Key可以全部分离出来,存储到Set中来进行访问(因为Key不能重复)。

  5. Map中的value可以全部分离出来,存储在Collection的任何一个子集合中(value可能有重复)。

  6. Map中键值对的Key不能直接修改value可以修改,如果要修改key,只能先将该key删除掉,然后再来进行重新插入

  7. TreeMap和HashMap的区别
    在这里插入图片描述

🚩TreeSet的使用

import java.util.Map;
import java.util.TreeMap;public class TestMap {public static void main(String[] args) {TestMap();}public static void TestMap() {Map<String, String> m = new TreeMap<>();// put(key, value):插入key-value的键值对// 如果key不存在,会将key-value的键值对插入到map中,返回nullm.put("林冲", "豹子头");m.put("鲁智深", "花和尚");m.put("武松", "行者");m.put("宋江", "及时雨");String str = m.put("李逵", "黑旋风");System.out.println(m.size());System.out.println(m);// put(key,value): 注意key不能为空,但是value可以为空// key如果为空,会抛出空指针异常//m.put(null, "花名");str = m.put("无名", null);System.out.println(m.size());// put(key, value):// 如果key存在,会使用value替换原来key所对应的value,返回旧valuestr = m.put("李逵", "铁牛");// get(key): 返回key所对应的value// 如果key存在,返回key所对应的value// 如果key不存在,返回nullSystem.out.println(m.get("鲁智深"));System.out.println(m.get("史进"));//GetOrDefault(): 如果key存在,返回与key所对应的value,如果key不存在,返回一个默认值System.out.println(m.getOrDefault("李逵", "铁牛"));System.out.println(m.getOrDefault("史进", "九纹龙"));System.out.println(m.size());//containKey(key):检测key是否包含在Map中,时间复杂度:O(logN)// 按照红黑树的性质来进行查找// 找到返回true,否则返回falseSystem.out.println(m.containsKey("林冲"));System.out.println(m.containsKey("史进"));// containValue(value): 检测value是否包含在Map中,时间复杂度: O(N)// 找到返回true,否则返回falseSystem.out.println(m.containsValue("豹子头"));System.out.println(m.containsValue("九纹龙"));// 打印所有的key// keySet是将map中的key防止在Set中返回的for (String s : m.keySet()) {System.out.print(s + " ");}System.out.println();// 打印所有的value// values()是将map中的value放在collect的一个集合中返回的for (String s : m.values()) {System.out.print(s + " ");}System.out.println();// 打印所有的键值对// entrySet(): 将Map中的键值对放在Set中返回了for (Map.Entry<String, String> entry : m.entrySet()) {System.out.println(entry.getKey() + "--->" + entry.getValue());}System.out.println();}
}

运行结果如下:
在这里插入图片描述

🎋Set 的说明

Set官方文档
在这里插入图片描述
Set与Map主要的不同有两点:

  • Set是继承自Collection的接口类

  • Set中只存储了Key

⚽常见方法说明

在这里插入图片描述

🚨注意事项:

  1. Set是继承自Collection的一个接口类

  2. Set中只存储了key,并且要求key一定要唯一

  3. TreeSet的底层是使用Map来实现的,其使用key与Object的一个默认对象作为键值对插入到Map中的

  4. Set最大的功能就是对集合中的元素进行去重

  5. 实现Set接口的常用类有TreeSet和HashSet,还有一个LinkedHashSet,LinkedHashSet是在HashSet的基础上维护了一个双向链表来记录元素的插入次序。

  6. Set中的Key不能修改,如果要修改,先将原来的删除掉,然后再重新插入

  7. TreeSet中不能插入null的keyHashSet可以

  8. TreeSet和HashSet的区别
    在这里插入图片描述

🚩TreeMap使用案例

import java.util.Set;
import java.util.Iterator;
import java.util.TreeSet;public class TestSet {public static void main(String[] args) {TestSet();}public static void TestSet(){Set<String> s = new TreeSet<>();// add(key): 如果key不存在,则插入,返回ture// 如果key存在,返回falseboolean isIn = s.add("apple");s.add("orange");s.add("peach");s.add("banana");System.out.println(s.size());System.out.println(s);isIn = s.add("apple");// add(key): key如果是空,抛出空指针异常//s.add(null);// contains(key): 如果key存在,返回true,否则返回falseSystem.out.println(s.contains("apple"));System.out.println(s.contains("watermelen"));// remove(key): key存在,删除成功返回true// key不存在,删除失败返回false// key为空,抛出空指针异常s.remove("apple");System.out.println(s);s.remove("watermelen");System.out.println(s);//迭代器Iterator<String> it = s.iterator();while(it.hasNext()){System.out.print(it.next() + " ");}System.out.println();}
}

😎哈希表

🐱‍👤概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。

顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( ),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:

  • 插入元素
    根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
  • 搜索元素
    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(HashTable)(或者称散列表)

例如:数据集合{1,7,6,4,5,9};

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

在这里插入图片描述
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快

但是问题出现了:按照上述哈希方式,向集合中插入元素44,会出现什么问题?

这就涉及我们下面要讲的冲突

🧭冲突

🎋冲突的概念

对于两个数据元素的关键字Ki 和 Kj(i != j),有Ki !=K j,但有:Hash(Ki ) == Hash(K j ),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”

🛫冲突避免

首先,我们需要明确一点,由于我们哈希表底层数组的容量往往是小于实际要存储的关键字的数量的,这就导致一个问题,冲突的发生是必然的,但我们能做的应该是尽量的降低冲突率

🎄哈希函数设计避免冲突

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。 哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间

  • 哈希函数计算出来的地址能均匀分布在整个空间中

  • 哈希函数应该比较简单

常见哈希函数有:

🚩直接定制法–(常用)

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B 优点:简单、均匀 缺点:需要事先知道关键字的分布情况 使用场景:适合查找比较小且连续的情况 面试题:字符串中第一个只出现一次字符

🚩除留余数法–(常用)

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:
Hash(key) = key% p(p<=m),将关键码转换成哈希地址

🚩平方取中法–(了解)

假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址 平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

🚩折叠法–(了解)

折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

🚩随机数法–(了解)

选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。

通常应用于关键字长度不等时采用此法

🚩数学分析法–(了解)

设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。例如:
在这里插入图片描述
假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现 冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。

数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

🐱‍🐉负载因子调节避免冲突

在这里插入图片描述
负载因子和冲突率的关系粗略演示
在这里插入图片描述
所以当冲突率达到一个无法忍受的程度时,我们需要通过降低负载因子来变相的降低冲突率。

已知哈希表中已有的关键字个数是不可变的,那我们能调整的就只有哈希表中的数组的大小。

🛬冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

🥎闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

那如何寻找下一个空位置呢?我们有以下两个方法

🎈线性探测

比如上面的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,下标为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

插入

  • 通过哈希函数获取待插入元素在哈希表中的位置

  • 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素
    在这里插入图片描述

  • 采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

🎈二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为:Hi = (H0 +i^2 )% m, 或者:Hi= (H0 -i ^2 )% m。其中:i = 1,2,3…, 是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。 对于2.1中如果要插入44,产生冲突,使用解决后的情况
为:
在这里插入图片描述
研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容

因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷

🐱‍👓开散列/哈希桶

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中
在这里插入图片描述
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

开散列,可以认为是把一个在大集合中的搜索问题转化为在小集合中做搜索了

🚨冲突严重时的解决办法

刚才我们提到了,哈希桶其实可以看作将大集合的搜索问题转化为小集合的搜索问题了,那如果冲突严重,就意味着小集合的搜索性能其实也时不佳的,这个时候我们就可以将这个所谓的小集合搜索问题继续进行转化,例如:

  1. 每个桶的背后是另一个哈希表

  2. 每个桶的背后是一棵搜索树

🏀哈希表性能分析

虽然哈希表一直在和冲突做斗争,但在实际使用过程中,我们认为哈希表的冲突率是不高的,冲突个数是可控的,也就是每个桶中的链表的长度是一个常数,所以,通常意义下,我们认为==哈希表的插入/删除/查找时间复杂度是O(1) ==

⛩哈希java类集的关系

  1. HashMap 和 HashSet 即 java 中利用哈希表实现的 Map 和 Set

  2. java 中使用的是哈希桶方式解决冲突的

  3. java 会在冲突链表长度大于一定阈值后,将链表转变为搜索树(红黑树)

  4. java 中计算哈希值实际上是调用的类的 hashCode 方法,进行 key 的相等性比较是调用 key 的 equals 方法。所以如果要用自定义类作为 HashMap 的 key 或者 HashSet 的值,必须覆写 hashCode 和 equals 方法,而且要做到 equals 相等的对象,hashCode 一定是一致的

⭕总结

关于《【数据结构】 Map和Set详解》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/76777.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java面试题(持续更新中)

一、Java基础集合多线程JVM 1.Java基础 1.1面向对象和面向过程的区别 面向过程&#xff1a;面向过程的性能比面向对象高。因为类调用时需要实例化&#xff0c;消耗比较大&#xff0c;比较消耗资源&#xff0c;所以当性能是最重要的考量因素的时候&#xff0c;比如单片机、Li…

华为云云耀云服务器L实例评测|centos系统搭建git私服

搭建git私服 前言一、华为云云耀云服务器L实例租用二、华为云云耀云服务器L实例安装git三、华为云云耀云服务器L实例git配置1.创建文件用于存放公钥2.设置文件权限3.配置本地公钥 四、华为云云耀云服务器L实例部署git仓库四、git仓库到本地总结 前言 之前一直想搭建一个属于自…

react中使用Modal.confirm数据不更新的问题解决

在使用Modal.confirm的时候今天发现了个疑惑的问题&#xff0c;为什么我明明从新set了数据而页面视图没有变化&#xff0c;查了一下官方文档找到了答案&#xff0c;解决了这个问题&#xff0c;特意在这里留下痕迹。 import { Button, Col, Form, Input, Modal, Radio, Row, Se…

OPENCV+QT环境配置

【qtopencv开发入门&#xff1a;4步搞定opencv环境配置2】https://www.bilibili.com/video/BV1f34y1v7t8?vd_source0aeb782d0b9c2e6b0e0cdea3e2121eba 第一步&#xff1a; 安装QT Qt 5.15 第二步&#xff1a; 安装OPENCV VS2022 Opencv4.5.5 C 配置_愿飞翔的鱼儿的博客…

SpringBoot底层注解

文章目录 前言一、Configuration二、Import导入组件三、Conditional条件装配四、ImportResource导入Spring配置文件五、ConfigurationProperties配置绑定总结 前言 本文主要讲诉Configuration、Import、Conditional、ImportResource、ConfigurationProperties注解。 先将实体…

【DockerCE】Docker-CE 24.0.6正式版发布

官网下载地址&#xff08;For RHEL/CentOS 7.9&#xff09;&#xff1a; https://download.docker.com/linux/centos/7/x86_64/stable/Packages/ 相对于24.0.5版本&#xff0c;本次24.0.6版本更新的rpm包有 5 个&#xff0c;使用目录对比软件对比的结果如下&#xff1a; 在Lin…

使用融云 CallPlus SDK,一小时实现一款 1V1 视频应用

9 月 21 日&#xff0c;融云直播课 社交泛娱乐出海最短变现路径如何快速实现一款 1V1 视频应用&#xff1f; 欢迎点击小程序报名~ 1V1 音视频、远程服务类应用的实现利器——融云 CallPlus SDK 上线&#xff01; 关注【融云全球互联网通信云】了解更多 作为新一代音视频通话场…

RuoYi若依管理系统最新版 基于SpringBoot的权限管理系统

RuoYi是一个后台管理系统&#xff0c;基于经典技术组合&#xff08;Spring Boot、Apache Shiro、MyBatis、Thymeleaf&#xff09;主要目的让开发者注重专注业务&#xff0c;降低技术难度&#xff0c;从而节省人力成本&#xff0c;缩短项目周期&#xff0c;提高软件安全质量。 本…

前端代理报错Error occured while trying to proxy to: localhost:端口

webpack配置进行前端代理时&#xff0c; 报错信息如下&#xff1a;(DEPTH_ZERO_SELF_SIGNED_CERT) 需设置&#xff1a;secure为false即可解决此报错 // webpack配置前端代理config["/test"]{target: https://xxxx.com,changeOrigin: true,secure: false // 这个配置…

CentOS 安装HTTP代理服务器 Tinyproxy

Tinyproxy是一个小型的基于GPL的HTTP/SSL代理程序&#xff0c;非常适合小型网络而且便于快速部署。这个代理程序最大的优点就是占用系统资源比较少。这里使用的系统为CentOS7.6&#xff0c;可以直接 yum 方式安装。 yum install tinyproxy -y 如果提示找不到安装包&#xff0…

列表和字典练习

定义四个学生信息 在Python环境下&#xff0c;用列表定义&#xff1a; >>> stu1[xiaoming,True,21,79.9] >>> stu1[lihong,False,22,69.9] >>> stu1[zhangqiang,True,20,89.9] >>> stu1[EMT,True,23,99.9]如图&#xff0c;定义了四个列表…

LeetCode 刷题记录——从零开始记录自己一些不会的

1. 最多可以摧毁的敌人城堡数目 题意 思路 两层循环&#xff0c;太low了 用一个变量记录前一个位置 代码 class Solution { public:int captureForts(vector<int>& forts) {int ans 0, pre -1;for (int i 0; i < forts.size(); i) {if (forts[i] 1 || forts…

c++ 学习之类型,常量以及变量的重点知识

const 和 volatile 组合考点 const int ( * ) 等价于 int const ( * ) const int x 1 ; 说明 x 是常量&#xff0c;无法修改 如何区分指针常量和常量指针 指针常量 为 先有指针后有常量 故为 形式如 &#xff1a; int * const p & x ; 且const 修饰的是 p &#xff0c…

【MySQL】JDBC编程

MySQL-JDBC编程 文章目录 MySQL-JDBC编程Java的数据库编程JDBC工作原理JDBC的使用驱动包下载导入代码编写 Java的数据库编程 JDBC&#xff0c;即Java Database Connectivity&#xff0c;java数据库连接。是一种用于执行SQL语句的Java API&#xff0c;它是 Java中的数据库连接…

DELL 台式机的内置扬声器如何关闭

DELL 台式机的内置扬声器如何关闭&#xff1f; 点“开始”——控制面板——高清晰音频管理器——右上角“设备高级设置”——“播放设备”——点击“使前部和后部设备播放不同的音频流”前面的小方框——“确认”。ok了。

初识网络的发展史、通信基础和原理

目录 一.网络的发展史 二.网络通信基础 2.1IP地址 2.2端口号 2.3认识协议 2.3.1协议是什么&#xff1f; 2.3.2为什么需要协议&#xff1f; 2.3.3OSI模型和TCP/IP体系结构 三.网络通信的原理 总结 &#x1f381;个人主页&#xff1a;tq02的博客_CSDN博客-C语言,Java,J…

R730xd风扇调速

共使用了三个方法都是有效的&#xff0c;dell_fans_controller_v1.0.0和Dell_EMC_Fans_Controller_1.0.1以及ipmitool&#xff0c;前面两个是GUI界面后面一个是命令行工具 重点 我虽然能通过设置的ip地址能访问idrac管理界面&#xff0c;但是使用上面三个工具都是无法获取风扇…

Mybatis-Plus 批量插入数据时报错 java.lang.Object Not Found TableInfoCache

文章目录 前言问题回溯排查过程总结 前言 报错堆栈信息如下&#xff0c;基本是mybatis-plus源码中的一些东西&#xff1a; com.baomidou.mybatisplus.core.exceptions.MybatisPlusException: java.lang.Object Not Found TableInfoCache.at com.baomidou.mybatisplus.core.to…

REST风格【SpringBoot】

1.REST简介 行为动作 通常模块名使用复数&#xff0c;也就是加s 2.RESTful入门 Controller public class UserController {RequestMapping(value "/users", method RequestMethod.POST)public String save() {System.out.println("user save");return &…

ClickHouse进阶(十二):Clickhouse数据字典-2-字典类型

进入正文前&#xff0c;感谢宝子们订阅专题、点赞、评论、收藏&#xff01;关注IT贫道&#xff0c;获取高质量博客内容&#xff01; &#x1f3e1;个人主页&#xff1a;含各种IT体系技术,IT贫道_大数据OLAP体系技术栈,Apache Doris,Kerberos安全认证-CSDN博客 &#x1f4cc;订阅…