RIPGeo代码理解(六)main.py(运行模型进行训练和测试)

​代码链接:RIPGeo代码实现

    ├── preprocess.py # 预处理数据集并为模型运行执行IP聚类
    ├── main.py # 运行模型进行训练和测试
    ├── test.py #加载检查点,然后测试

一、导入各种模块和数据库

import torch.nnfrom lib.utils import *
import argparse
import numpy as np
import random, os
from lib.model import *
# import wandb
import copy

整体功能是准备运行一个 PyTorch 深度学习模型的环境,具体的功能实现需要查看 lib.utils、lib.model 中的代码,以及整个文件的后续部分。

1、from lib.utils import *:从 lib.utils 模块中导入所有内容。

2、from lib.model import *:从 lib.model 模块中导入所有内容。

3、import copy:导入 copy 模块,用于复制对象,通常用于创建对象的深拷贝

二、参数初始化(通过命令行参数)

parser = argparse.ArgumentParser()
# parameters of initializing
parser.add_argument('--seed', type=int, default=1024, help='manual seed')
parser.add_argument('--model_name', type=str, default='RIPGeo')
parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"],help='which dataset to use')

这部分代码的目的是通过命令行参数设置一些初始化的参数,例如随机数种子、模型名称和数据集名称。这使得在运行脚本时可以通过命令行参数来指定这些参数的值。

1、parser = argparse.ArgumentParser():创建一个 argparse.ArgumentParser 对象,用于解析命令行参数。

2、parser.add_argument('--seed', type=int, default=1024, help='manual seed'):添加一个命令行参数,名称为 '--seed',表示随机数种子,类型为整数,默认值为 1024help 参数是在命令行中输入 --help 时显示的帮助信息。

3、parser.add_argument('--model_name', type=str, default='RIPGeo'):添加一个命令行参数,名称为 '--model_name',表示模型的名称,类型为字符串,默认值为 'RIPGeo'

4、parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"], help='which dataset to use'):添加一个命令行参数,名称为 '--dataset',表示数据集的名称,类型为字符串,默认值为 'New_York',choices 参数指定了可选的值为 ["Shanghai", "New_York", "Los_Angeles"],用户只能从这三个值中选择。

三、训练过程参数设置

# parameters of training
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)parser.add_argument('--lr', type=float, default=2e-3)
parser.add_argument('--harved_epoch', type=int, default=5)
parser.add_argument('--early_stop_epoch', type=int, default=50)
parser.add_argument('--saved_epoch', type=int, default=100)

这部分代码的目的是设置一些训练过程中的超参数,例如优化器的动量参数、学习率、权重参数等。这些参数在训练过程中会影响模型的更新和收敛速度。

1、parser.add_argument('--beta1', type=float, default=0.9):添加一个命令行参数,名称为 '--beta1',表示 Adam 优化器的第一个动量(momentum)参数,类型为浮点数,默认值为 0.9。

2、parser.add_argument('--beta2', type=float, default=0.999):添加一个命令行参数,名称为 '--beta2',表示 Adam 优化器的第二个动量参数,类型为浮点数,默认值为 0.999。

3、parser.add_argument('--lr', type=float, default=2e-3):添加一个命令行参数,名称为 '--lr',表示学习率,类型为浮点数,默认值为 2e-3。

4、parser.add_argument('--harved_epoch', type=int, default=5):添加一个命令行参数,名称为 '--harved_epoch',表示当连续多少个epoch的性能没有增加时,学习率减半,类型为整数,默认值为 5。

5、parser.add_argument('--early_stop_epoch', type=int, default=50):添加一个命令行参数,名称为 '--early_stop_epoch',表示当连续多少个epoch的性能没有增加时,训练停止,类型为整数,默认值为 50。

6、parser.add_argument('--saved_epoch', type=int, default=100):  添加一个命令行参数,名称为 '--saved_epoch',表示为测试保存多少个checkpoint(epoch),类型为整数,默认值为 100。

四、模型参数设置

# parameters of model
parser.add_argument('--dim_in', type=int, default=30, choices=[51, 30], help="51 if Shanghai / 30 else")
parser.add_argument('--dim_med', type=int, default=32)
parser.add_argument('--dim_z', type=int, default=32)
parser.add_argument('--eta', type=float, default=0.1)
parser.add_argument('--zeta', type=float, default=0.1)
parser.add_argument('--step', type=int, default=2)
parser.add_argument('--mu', type=float, default=0.2)
parser.add_argument('--lambda_1', type=float, default=1)
parser.add_argument('--lambda_2', type=float, default=1)
parser.add_argument('--c_mlp', type=bool, default=True)
parser.add_argument('--epoch_threshold', type=int, default=50)opt = parser.parse_args()

这部分用于定义模型的结构和训练过程中的一些重要参数。

1、parser.add_argument('--dim_in', type=int, default=30, choices=[51, 30], help="51 if Shanghai / 30 else"): 添加一个命令行参数,名称为 ''--dim_in',表示输入数据的维度,类型为整数,默认值为 30,可选的有[51,30],如果是上海数据集,维度为51,否则为30

2、parser.add_argument('--dim_med', type=int, default=32): 添加一个命令行参数,名称为 '--dim_med',表示中间层的维度,类型为整数,默认值为 32。

3、parser.add_argument('--dim_z', type=int, default=32): 添加一个命令行参数,名称为 '--dim_z',表示向量表示的维度,类型为整数,默认值为 32。

4、parser.add_argument('--eta', type=float, default=0.1): 添加一个命令行参数,名称为 '--eta',表示数据扰动程度,默认值为 0.1。

5、parser.add_argument('--zeta', type=float, default=0.1): 添加一个命令行参数,名称为 '--zeta',表示参数扰动程度,默认值为 0.1。

6、parser.add_argument('--step', type=int, default=2): 添加一个命令行参数,名称为 '--step',表示单参数扰动下梯度上升次数,类型为整数,默认值为 2。

7、parser.add_argument('--mu', type=float, default=0.2): 添加一个命令行参数,名称为 '--mu',表示参数扰动的内学习率,默认值为 0.2。

8、parser.add_argument('--lambda_1', type=float, default=1): 添加一个命令行参数,名称为 '--lambda_1',表示损失函数中数据扰动的权衡系数,默认值为 1。

9、parser.add_argument('--lambda_2', type=float, default=1): 添加一个命令行参数,名称为 '--lambda_2',表示损失函数中参数扰动的权衡系数,默认值为 1。

10、parser.add_argument('--c_mlp', type=bool, default=True): 添加一个命令行参数,名称为 '--c_mlp',表示在预测是否使用collaborative_mlp时默认值为 True。

11、parser.add_argument('--epoch_threshold', type=int, default=50): 添加一个命令行参数,名称为 '--epoch_threshold',表示当我们开始在数据和参数中添加扰动时,类型为整数,默认值为 50。

12、opt = parser.parse_args(): 将命令行参数解析成Python对象。简单来说,就是通过parser解析命令行传入的参数,并将其赋值给变量pt。

五、设置随机种子数

if opt.seed:print("Random Seed: ", opt.seed)random.seed(opt.seed)torch.manual_seed(opt.seed)
torch.set_printoptions(threshold=float('inf'))

这一部分的目的是确保在使用随机数的场景中,每次运行程序得到的随机结果是可复现的。通过设置相同的随机数种子,可以使得每次运行得到相同的随机数序列。

1、如果 opt 对象中的 seed 属性存在(不为 0 或 False 等假值),则执行以下操作:

  • 打印随机数种子的信息。
  • 使用 random 模块设置 Python 内建的随机数生成器的种子。
  • 使用 PyTorch 的 torch 模块设置随机数种子。

2、torch.set_printoptions(threshold=float('inf')):设置 PyTorch 的打印选项,将打印的元素数量限制设置为无穷大,即不限制打印的元素数量。这样可以确保在打印张量时,所有元素都会被打印出来,而不会被省略。

六、过滤所有警告信息

warnings.filterwarnings('ignore')

过滤掉所有警告信息,将警告信息忽略。这通常用于在代码中避免显示一些不影响程序执行的警告信息,以保持输出的清晰。在某些情况下,警告信息可能是有用的,但如果明确知道这些警告对程序执行没有影响,可以选择忽略它们。

七、动态选择运行环境

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print("device:", device)
print("Dataset: ", opt.dataset)
cuda = True if torch.cuda.is_available() else False
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

这部分代码的目的是根据硬件环境动态选择运行模型的设备,并选择相应的 PyTorch 张量类型。如果有可用的 GPU,就使用 GPU 运行模型和 GPU 张量类型;否则,使用 CPU 运行模型和 CPU 张量类型。

1、device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'):创建一个 PyTorch 设备对象,表示运行模型的设备。如果 CUDA 可用(即有可用的 GPU),则使用 'cuda:0' 表示第一个 GPU,否则使用 'cpu' 表示 CPU。

2、print("device:", device):打印设备的信息,即使用的是 GPU 还是 CPU。

3、cuda = True if torch.cuda.is_available() else False:根据 CUDA 是否可用设置一个布尔值,表示是否使用 GPU。如果 CUDA 可用,则 cuda 为 True,否则为 False。

4、Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor:根据上一步得到的 cuda 布尔值选择使用 GPU 还是 CPU 上的 PyTorch 张量类型。如果 cuda 为 True,则 Tensor 被设置为 torch.cuda.FloatTensor,表示在 GPU 上的浮点数张量类型,否则设置为 torch.FloatTensor,表示在 CPU 上的浮点数张量类型。

八、加载数据(训练测试)

'''load data'''
train_data = np.load("./datasets/{}/Clustering_s1234_lm70_train.npz".format(opt.dataset),allow_pickle=True)
test_data = np.load("./datasets/{}/Clustering_s1234_lm70_test.npz".format(opt.dataset),allow_pickle=True)
train_data, test_data = train_data["data"], test_data["data"]
print("data loaded.")

这部分代码的目的是加载训练集和测试集的数据,数据文件的路径根据 opt.dataset 的值确定(见四、模型参数设置)。

train_data = np.load("./datasets/{}/Clustering_s1234_lm70_train.npz".format(opt.dataset), allow_pickle=True):使用 NumPy 的 load 函数加载训练数据。数据集的路径根据opt.dataset的取值而动态确定。allo

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/767050.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端制作计算器

用htmlcssjs完成计算器的基本功能&#xff0c;代码如下&#xff1a; HTML代码 <div id"four"> <div class"evaluator"><div class"input"><input type"text"></div><table><tr><td>…

谧林涓露门禁

原神武器升级材料谧林涓露和门禁好像聂。 difference(){union(){cylinder(2, 10,10, $fn365);hull(){translate([15,0,0])cylinder(1,2,2,$fn365);cylinder(1,10,10,$fn365);}}translate([15,0,-1])cylinder(4,1,1,$fn365); }

modelsim与quartus联合仿真ROM读不出数据

modelsim与quartus联合仿真ROM没有数据被读出&#xff0c;很是纳闷。 原因&#xff1a;hex或者mif文件放的不对&#xff0c;放在与db放在同一个文件夹下。modelsim在这个目录查找mif文件或hex。 这是我遇到的问题。当然可能还有其他的问题&#xff1a; 1、mif文件的格式不对&a…

双系统安装03--在已有麒麟KOS基础上安装Windows10

原文链接&#xff1a;双系统安装03–在已有麒麟KOS基础上安装Windows10 Hello&#xff0c;大家好啊&#xff01;继我们之前讨论的关于双系统安装的系列文章之后&#xff0c;今天我将带给大家这个系列的第三篇——在已有的麒麟桌面操作系统上安装Windows 10。对于想要在使用麒麟…

docker安装ES7.1.1(单机版)+ik分词器+es-head可视化

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站&#xff0c;这篇文章男女通用&#xff0c;看懂了就去分享给你的码吧。 Elasticsearch 是一…

力扣236 二叉树的最近公共祖先 Java版本

文章目录 题目描述代码 题目描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个节点 p、q&#xff0c;最近公共祖先表示为一个节点 x&#xff0c;满足 x 是 p、q 的祖先且 x 的深度尽可能大&…

FlyControls 是 THREE.js 中用于实现飞行控制的类,它用于控制摄像机在三维空间中的飞行。

demo演示地址 FlyControls 是 THREE.js 中用于实现飞行控制的类&#xff0c;它用于控制摄像机在三维空间中的飞行。 入参&#xff1a; object&#xff1a;摄像机对象&#xff0c;即要控制的摄像机。domElement&#xff1a;用于接收用户输入事件的 HTML 元素&#xff0c;通常…

C++函数参数传递

目录 传值参数 指针形参 传引用参数 使用引用避免拷贝 使用引用形参返回额外信息 const形参和实参 指针或引用形参与const 数组形参 管理指针形参 使用标记指定数组长度 使用标准库规范 显式传递一个表示数组大小的形参 数组形参和const 数组引用形参 传递多维数…

Django缓存(一)

一、缓存的介绍 官网:Django 缓存框架 | Django 文档 | Django 为什么要什么缓存? 为了减少服务器的计算开销 Django框架自带有一个强大的缓存系统,可以保存动态页面,因此不必为每个请求计算它们。为了方便,Django提供不同级别的缓存粒度:可以缓存特定视图的输出,可以只…

Web核心简介

简介 web&#xff1a;全球广域网&#xff0c;也称万维网(www)&#xff0c;能够通过浏览器访问的网站 JavaWeb&#xff1a;是用Java技术来解决相关web互联网领域的技术栈 JavaWeb技术栈 B/S架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式&#xff0c;它的…

走迷宫----bfs再矩阵图里的应用模版

对于之前走迷宫的那个题 回忆一下dfs的代码 #include <bits/stdc.h> using namespace std; int a[110][110]; bool check[110][110]; int n,m; int ans1e9; int nxt[4][2]{{1,0},{0,-1},{-1,0},{0,1}}; void dfs(int x,int y,int step){if(xn&&ym){ansmin(ans,…

IntelliJ IDEA集成git配置账号密码

1 背景说明 刚使用IDEA,本地也安装Git,在提交和拉取代码的时候,总提示登录框,而且登录框还不能输入账号密码,只能输入登录Token。如下: 从而无法正常使用IDEA的Git功能,很苦恼。 2 解决方法 2.1 安装Git 进入官网地址 https://git-scm.com/,点击下载: 浏览器直接…

机器学习算法那些事 | 使用Transformer模型进行时间序列预测实战

本文来源公众号“机器学习算法那些事”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;使用Transformer模型进行时间序列预测实战 时间序列预测是一个经久不衰的主题&#xff0c;受自然语言处理领域的成功启发&#xff0c;transfo…

WPS制作甘特图

“ 甘特图&#xff08;Gantt chart&#xff09;又称为横道图、条状图&#xff08;Bar chart&#xff09;&#xff0c;通过条状图来显示项目、进度和其他时间相关的系统进展的内在关系随着时间进展的情况。” 设置基础样式 设置行高 设置宽度 准备基础数据 计算持续时间 …

轻松引流几百精准粉丝,抖音自动爆粉秘籍揭秘

对于做互联网的朋友们来说&#xff0c;引流是一个必不可少的环节。 掌握一种优秀的引流方法至关重要&#xff0c;这也可以视为我们的生计之源。 今天&#xff0c;我将向大家介绍一款全自动的引流工具——抖音全自动引流脚本软件。 这款软件的效果非常显著&#xff0c;它可以替…

R-CNN笔记

目标检测之R-CNN论文精讲&#xff0c;RCNN_哔哩哔哩_bilibili 论文背景 在该论文提出之前&#xff0c;主流的目标检测思路是&#xff1a; 将一幅图片划分成很多个区域&#xff0c;单独提取出来 对于每个区域使用传统的特征提取方法提取 提取结束后可以使用以为特征向量表示 可以…

计算方法实验2:列主元消元法和Gauss-Seidel迭代法解线性方程组

Task 即已知 y 0 0 , y 100 1 y_00,y_{100}1 y0​0,y100​1&#xff0c;解线性方程组 A y b \mathbf{A}\mathbf{y} \mathbf{b} Ayb&#xff0c;其中 A 99 99 [ − ( 2 ϵ h ) ϵ h 0 ⋯ 0 ϵ − ( 2 ϵ h ) ϵ h ⋯ 0 0 ϵ − ( 2 ϵ h ) ⋯ 0 ⋮ ⋮ ⋱ ⋱ ⋮ 0 0 ⋯…

C++命名空间和内联函数

目录 命名空间 内联函数 概述 特性&#xff1a; 命名空间 在C/C中&#xff0c;变量&#xff0c;函数和和类这些名称都存在于全局作用域中&#xff0c;可能会导致很多冲突&#xff0c;使用命名空间的目的是对标识符的名称进行本地化&#xff0c;避免命名冲突或名字污染&…

C语言函数和数组

目录 一.数组 一.一维数组&#xff1a; 1.一维数组的创建: 2.一维数组的初始化&#xff1a; 3.一维数组的使用 4.一维数组在内存中的存储&#xff1a; 二.二维数组&#xff1a; 三.数组越界&#xff1a; 四.数组作为函数参数&#xff1a; 二.函数 一.函数是什么&…

vue3对openlayers使用(加高德,天地图图层)

OpenLayers认识 WebGIS四大框架&#xff1a; Leaflet、OpenLayers、Mapbox、Cesium OpenLayers 是一个强大的开源 JavaScript 地图库&#xff0c;专注于提供可嵌入网页的交互式地图体验。作为一款地理信息系统&#xff08;GIS&#xff09;的前端开发工具&#xff0c;OpenLaye…