回归预测 | Matlab基于SAO-LSTM雪消融算法优化长短期记忆神经网络的数据多输入单输出回归预测

回归预测 | Matlab基于SAO-LSTM雪消融算法优化长短期记忆神经网络的数据多输入单输出回归预测

目录

    • 回归预测 | Matlab基于SAO-LSTM雪消融算法优化长短期记忆神经网络的数据多输入单输出回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab基于SAO-LSTM雪消融算法优化长短期记忆神经网络的数据多输入单输出回归预测(完整源码和数据);
2.优化参数为:学习率,隐含层节点,正则化参数。
3.多特征输入单输出的回归预测。程序内注释详细,直接替换数据就可以用。
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式(资源处下载):Matlab基于SAO-LSTM雪消融算法优化长短期记忆神经网络的数据多输入单输出回归预测。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
tic
% restoredefaultpath%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x);[Best_score,Best_pos,curve]=SAO(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness);
Best_score(1, 2) = round(Best_score(1, 2));   
best_hd  = Best_score(1, 2); % 最佳隐藏层节点数
best_lr= Best_score(1, 1);% 最佳初始学习率
best_l2 = Best_score(1, 3);% 最佳L2正则化系数

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/767018.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】进程的进一步认识

目录 进程的创建 fork函数初步认识 fork函数的返回值 写时拷贝 操作系统怎么知道什么时候要写时拷贝的呢? fork的常规用法 fork调用失败的原因 进程终止 进程的退出场景 进程常见退出方法 正常终止(可以通过 echo $? 查看进程退出码&#xff…

Spring Boot从入门到实战

课程介绍 本课程从SpringBoot的最基础的安装、配置开始到SpringBoot的日志管理、Web业务开发、数据存储、数据缓存,安全控制及相关企业级应用,全程案例贯穿,案例每一步的都会讲解实现思路,全程手敲代码实现。让你不仅能够掌Sprin…

【Linux操作系统】:进程控制

目录 一、程序地址空间 1.C/C中的程序地址空间 2.进程地址空间 进程地址空间概念 什么是地址空间?什么是区域划分? 为啥要有地址空间? 地址空间的补充 二、进程创建 1.fork函数 2.写时拷贝 3.fork常规用法 4.fork调用失败的原因 …

Linux 常用命令 1

Tips:终端热键ctrl shift 放大终端窗口的字体 ctrl - 缩小终端窗口的字体 注意区分大小写 查阅命令帮助信息: 1)--help command –help(两个减号) 显示command命令的帮助信息 2)man man command 查阅command命令的使…

MyEclipse打开文件跳转到notepad打开问题

问题描述 windows系统打开README.md文件,每次都需要右键选择notepad打开,感觉很麻烦,然后就把README.md文件打开方式默认选择了notepad,这样每次双击就能打开,感觉很方便。 然后某天使用MyEclipse时,双击RE…

matlab实现神经网络检测手写数字

一、要求 1.计算sigmoid函数的梯度; 2.随机初始化网络权重; 3.编写网络的代价函数。 二、算法介绍 神经网络结构: 不正则化的神经网络的代价函数: 正则化: S型函数求导: 反向传播算法&…

【Linux】Linux工具学习之git

🔥博客主页: 小羊失眠啦. 🎥系列专栏:《C语言》 《数据结构》 《C》 《Linux》 《Cpolar》 ❤️感谢大家点赞👍收藏⭐评论✍️ 文章目录 前言一、账号注册1.1 GitHub与Gitee 二、构建仓库三、安装git 四、配置git五、克…

详解库和程序运行过程

我最近开了几个专栏,诚信互三! > |||《算法专栏》::刷题教程来自网站《代码随想录》。||| > |||《C专栏》::记录我学习C的经历,看完你一定会有收获。||| > |||《Linux专栏》&#xff1…

lvgl 窗口 windows lv_port_win_visual_studio 版本 已解决

不知道的东西,不知道lvgl窗口。一切从未知开始 lv_port_win_visual_studio 主分支 对应的分支 v7版本更新git submodule update --init --recursive同步 lvgl代码随后打开 visualSudio 打开.sln 文件 编译 release模式 允许 一切正常代码部分

考研数学基础差,跟宋浩?

宋浩老师的课程我大一的时候听过,是我大一高数的救命恩人! 不过,考研的针对性很强,基础差听宋浩老师的课程不如直接听汤家凤老师的课程,因为汤家凤老师的课程是专门为考研数学设计的,针对性很强。 汤家凤老…

K8S之DaemonSet控制器

DaemonSet控制器 概念、原理解读、应用场景概述工作原理典型的应用场景介绍DaemonSet 与 Deployment 的区别 解读资源清单文件实践案例 概念、原理解读、应用场景 概述 DaemonSet控制器能够确保K8S集群所有的节点都分别运行一个相同的pod副本; 当集群中增加node节…

Django之Celery篇(一)

一、介绍 Celery是由Python开发、简单、灵活、可靠的分布式任务队列,是一个处理异步任务的框架,其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务。 Celery侧重于实时操作,但对调度支持也很好,其每天可以处理数以百万计的任务。特点: 简单:熟悉…

监控系统Prometheus--入门

文章目录 Prometheus特点易于管理监控服务的内部运行状态强大的数据模型强大的查询语言PromQL高效可扩展易于集成可视化开放性 Prometheus架构Prometheus 生态圈组件架构理解 Prometheus的安装安装Prometheus Server上传安装包解压安装包修改配置文件 prometheus.yml 安装Pushg…

Halcon 3D 平面拟合(区域采样、Z值过滤、平面拟合、平面移动)

Halcon 3D 平面拟合(区域采样、Z值过滤、平面拟合、平面移动) 链接:https://pan.baidu.com/s/1UfFyZ6y-EFq9jy0T_DTJGA 提取码:ewdi * 1.读取图片 ****************

数组三(冒泡排序、二分查找)

目录 冒泡排序算法 冒泡排序的基础算法 冒泡排序的优化算法 二分法查找 冒泡排序算法 冒泡排序是最常用的排序算法,在笔试中也非常常见,能手写出冒泡排序算法可以说是 基本的素养。 冒泡排序的基础算法 冒泡排序算法重复地走访过要排序的数列&#…

2024-03-22 问AI: 介绍一下深度学习中的 sigmoid函数

文心一言 Sigmoid函数是深度学习中常用的一种激活函数,主要用于将神经元的输出值压缩到0和1之间。这种特性使得sigmoid函数在二分类问题中特别有用,因为输出值可以被解释为属于某个类别的概率。 sigmoid函数的数学表达式为: σ(x) 1 / (1…

Pytorch CUDA Reflect Padding 算子实现详解

CUDA 简介 CUDA(Compute Unified Device Architecture)是由NVIDIA开发的一种并行计算平台和应用编程接口(API),允许软件开发者和软件工程师使用NVIDIA的图形处理单元(GPU)进行通用计算。自2007…

NodeJS 集群模块: 为App创建集群实例

NodeJS 集群模块: 为App创建集群实例 目录 NodeJS 集群模块: 为App创建集群实例Node.js 集群介绍:终极扩展策略使用集群模块开始扩展 Node.js扩展 Node.js 的两种集群策略使用集群受益的 Node.js 应用程序示例没有集群的 Node.js:不可伸缩的原则集群操作:一个扩展的 Node.js…

Redis 配置与优化

目录 一、Redis 介绍 1.1、关系数据库与非关系型数据库 1)关系型数据库 2)非关系型数据库 3)非关系型数据库产生背景 1.2、Redis 基础 1)Redis 简介 2)Redis 安装部署 3)配置参数 1.3、Redi…

【聊一聊】三种工厂模式的创建

三种工厂模式的创建 今天终于星期五了,最近由于碰上一个需求,中间涉及Oracle改国产数据库的改造,好家伙,差点没把我忙坏了 不过今天终于有空啦!~哈哈哈 这篇本应该是上周就结束的,但是拖到今天,我们就今天进行结束 (还有一件快乐的事情,就是我遇见自己喜欢的人啦!嘻嘻) 好啦!~话…