数据结构/C++:哈希表

数据结构/C++:哈希表

    • 哈希表概念
    • 哈希函数
      • 直接定址法
      • 除留余数法
    • 哈希冲突
      • 闭散列 - 开放定址法
        • 基本结构
        • 查找
        • 插入
        • 删除
        • 总代码展示
      • 开散列 - 哈希桶
        • 基本结构
        • 查找
        • 插入
        • 删除
        • 代码展示


哈希表概念

在顺序表中,查找一个数据的时间复杂度为O(N);在平衡树这种树形结构中,查找一个数据的时间复杂度为O( log ⁡ N \log_{}{N} logN )。尽管平衡树的搜索已经很优秀了,但是我们理想中的搜索方法是不经过任何比较,一次直接从数据结构中拿到想要的元素,也就是把搜索的复杂度优化为O(1)。这看似天方夜谭,但是哈希表可以做到,本博客就讲解哈希表,以及它的多种实现方案。

如果某个字符串中只有小写字母a-z,请你统计所有字母出现的次数。你会怎么做?

我们可以创建一个长为26的数组arr,然后让a对应arr[0],b对应arr[1]以此类推,每个位置都对应一个字母,然后遍历一遍字符串。假设当前字母为i,按照转换规则:arr[i - 'a']++进行转换。

其实这就是一个哈希表的思想,我们把数据a - z通过i - 'a'这个映射关系转化为了一个数字,然后再把对应的数组下标赋予对应的意义。此时这个数组就是一个哈希表。

所以哈希表可以简单理解为:把数据转化为数组的下标,然后用数组的下标对应的值来表示这个数据。如果我们想要搜索这个数据,直接计算出这个数据的下标,然后就可以直接访问数组对应的位置,所以可以用O(1)的复杂度直接找到数据。

其中,这个数据对应的数字叫做关键码(Key),这个把关键码转化为下标的规则,叫做哈希函数(Hash)

要注意的是,有一些数据并不是整型,比如字符串,对象等等。对于这种数据,我们要先用一套规则把它们转化为整数(关键码),然后再通过哈希函数映射为数组下标。


哈希函数

哈希函数原则:

  1. 哈希函数转换后,生成的地址(下标)必须小于哈希表的最大地址(下标)
  2. 哈希函数计算出来的地址(下标)必须均匀地分布
  3. 哈希函数尽可能简单

接下来我们看一些常见的哈希函数:

直接定址法

取关键字的某个线性函数为哈希表的地址:

Hash (Key)  = A × Key  + B \text { Hash (Key) }=A × \text { Key }+B  Hash (Key) =A× Key +B

这种哈希函数特点就是简单,均匀。但是由于我们没有限制这个地址的范围,其有可能对数组越界访问,所以要提前知道数据的范围

比如我们刚刚通过字母的ASCII码直接减去a的ASCII码的过程,就是一个直接定址过程。在这之前,我们知道小写字母只有26个,所以没有发生越界访问。

这种哈希函数在一些数据简单的算法题中高频使用

除留余数法

假设哈希表的地址数目为m,取Keym取模后得到的值作为下标

Hash (Key)  = K e y % m \text { Hash (Key) }=\text Key\ \% \ m  Hash (Key) =Key % m

该方法通过取模,简单地把地址控制在了目标范围内,STL库中使用的就是这种方法,本博客后续也使用这种方法。

此外还有一些哈希函数,但是都不常用了,此处不做讲解了。


哈希冲突

现在我们采用除留余数法作为哈希函数,我们尝试对一个长度为10的哈希表插入值:

在这里插入图片描述
其哈希函数为:
Hash (Key)  = K e y % 10 \text { Hash (Key) }=\text Key\ \% \ 10  Hash (Key) =Key % 10

现在我们插入1815124四个数字:
在这里插入图片描述

根据哈希函数的规则,我们把这四个数字映射到了合适的位置。现在我们载插入数字14,你会发现14 % 10 = 4,但是下标为4的位置已经被124占用了,这该怎么办?

这种多个数据占用一个位置的情况,叫做哈希冲突,解决哈希冲突有两种方法,分别是闭散列和开散列,我们现在就讲解两种方案,以及对应哈希表的实现方法。


闭散列 - 开放定址法

闭散列,也叫做开放定址法,当发生哈希冲突时,如果哈希表没有被装满,说明哈希表中还有空位置,那么我们可以把发生冲突的数据放到下一个空位置去。

比如在刚刚的情况中,我们插入14,发现下标为4的位置被占用了,于是到下标为5的位置,发现下标为5的位置也被占用了,于是到下标为6的位置。最后就插入下标6的位置:

在这里插入图片描述

当我们查找14的时候,先通过哈希函数计算出下标为4,然后发现哈希表中下标为4的位置不是14,于是向后查找,发现下标为5的位置不是14,再往后查找,发现14在下标为6的位置。

再比如,我们查找44的时候,先通过哈希函数计算出下标为4,然后发现哈希表中下标为4的位置不是44,于是向后查找,发现下标为5的位置不是44,再往后查找,发现下标为6的位置不是44,再向后查找,发现下标为7的位置没有数据了,于是推断出44数据不存在于哈希表中。

基本结构

首先我们需要一个枚举,来标识哈希表的不同状态:

enum State
{EMPTY,EXIST,DELETE
};

EMPTY:空节点
EXIST:数值存在
DELETE:数值被删除

为什么要这样标识节点呢?
我们看到以下情况:
在这里插入图片描述

现在我们将15这个数据从哈希表中删除,其面临着两个问题:

  1. 删除后,应该替换为什么数据?如果我们替换后的数据与插入的数据冲突怎么办?

因此我们不能直接替换来删除一个数据,而是用一个额外的变量来标识状态:EMPTY空,EXIST存在。

现在我们删除后试试看:
在这里插入图片描述
现在我们面临第二个问题:

  1. 我们删除节点后,会面临原本连续的数据被截断的问题。如果我们现在要查找数据14,其会从下标为4的位置开始查找,但是查找到下标为5的位置发现没有数据了,于是停止查找。

这个过程中,由于删除后的数据被标识为EMPTY,此时查找就发生了问题,因此我们要把删除DELETE和空EMPTY区分开来,当查找数据时,发现DELETE的节点应该继续往后查找

最后我们就得到了节点的三种状态标识:
在这里插入图片描述

现在我们再看到哈希表的基本结构:

enum State
{EMPTY,EXIST,DELETE
};template<class K, class V>
struct HashData
{pair<K, V> _kv;State _state = EMPTY;//标记状态
};template<class K, class V>
class HashTable
{
public:HashTable(size_t size = 10){_tables.resize(size);}private:vector<HashData<K, V>> _tables;//哈希表size_t _n = 0;//元素个数
};

哈希表的节点HashData

pair<K, V> _kv:哈希表存储的键值对
State _state = EMPTY:标识节点的状态,默认状态为空-EMPTY

在哈希表的类HashTable中,存在两个成员变量:

vector<HashData<K, V>> _tables:哈希表,表中存储着HashData<K, V>也就是键值对
size_t _n = 0:哈希表中的元素个数,初始值为0

HashTable构造函数:

HashTable(size_t size = 10)
{_tables.resize(size);
}

一开始给哈希表10个大小的空间,装不下再扩容。


查找

想要在哈希表中查找数据,无非就遵顼以下规则:

通过哈希函数计算出数据对应的地址
去地址处查找,如果地址处不是目标值,往后继续查找
遇到EMPTY还没有找到,说明数据不存在哈希表中
遇到DELETEEXIST,继续往后查找

代码如下:

HashData<K, V>* Find(const K& key)
{size_t hashi = key % _tables.size();while (_tables[hashi]._state != EMPTY){if (_tables[hashi]._kv.first == key&& _tables[hashi]._state == EXIST)return &_tables[hashi];hashi++;hashi %= _tables.size();}return nullptr;
}

代码解析:

HashData<K, V>* Find(const K& key)
查找函数,输入一个key值,返回指向该值节点的指针


size_t hashi = key % _tables.size();
通过除留余数法,计算出key对应的下标hashi


while (_tables[hashi]._state != EMPTY)
只要hashi对应的下标不为EMPTY,就继续往后查找


if (_tables[hashi]._kv.first == key&& _tables[hashi]._state == EXIST)
只有当前节点存在EXIST,并且节点内的值等于目标值,就返回该节点的地址


hashi++;hashi %= _tables.size();
如果当前节点不是目标值,往后一个节点查找。但是这个过程有可能越界,此时如果遇到哈希表末尾,则通过取模计算从头部继续查找


return nullptr;
如果前面没有找到,说明目标值不存在,返回空指针

但是当前的代码存在一个问题:哈希表作用于泛型,key % _tables.size()有可能是违法的行为,因为key可能不是一个数字。这该怎么办?

解决以上问题,就是把传进来的数据转化为整型。对此我们可以在模板中多加一个仿函数的参数,用户可以在仿函数中自定义数据 -> 整型的转换规则,然后我们在对这个整型使用除留余数法获取地址。

在那之前,我们可以先写一个仿函数,用于处理整型 -> 整型的转化:

struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};

因为本身就是整型,所以返回自己就可以了。
另外的,由于我们经常使用哈希表存储字符串,所以我们还可以写一个string -> 整型的转换规则:

经过研究,有人发现:把字符串的每一位的ASCII加起来,并且每次加和后,乘以一个数值,得到的数值,分散性很强:

struct HashFunc
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};

其中,这个数值由13间断地排列,这样得出来的值分散性最强,我此处采用数值131

在STL中,整型-> 整型转化的函数,被写为了一个模板,而这个string -> 整型被写为了一个模板特化:

template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};

现在我们给哈希表加上第三个模板参数Hash,用于传入仿函数:

template<class K, class V, class Hash>
class HashTable
{};

然后我们将这个HashFunc<K>仿函数作为哈希表的第三个模板参数的默认值:

template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{};

由于我们的string -> 整型被写为了一个模板特化,此时我们的string也可以通过默认值直接转化,不用自己传入模板参数。

原先我们获得下标的代码如下:

size_t hashi = key % _tables.size();

现在我们要通过仿函数来统一获得整型,再进行除留余数操作

Hash hs;
size_t hashi = hs(key) % _tables.size();

这样我们就可以让多种数据转为整型了。


插入

插入的基本逻辑如下:

  1. 先通过Find接口,查找目标值在不在哈希表中,如果目标值已经存在,返回flse,表示插入失败
  2. 通过哈希函数计算出目标值对应的下标
  3. 向下标中插入数据:
  • 如果下标对应的位置已经有数据,往后查找,直到某一个位置为EMPTY或者DELETE
  • 如果下标对应的位置没有数据,直接插入
  1. 插入后,把对应位置的状态转化为EXIST

代码如下:

bool Insert(const pair<K, V>& kv)
{if (Find(kv.first))return false;Hash hs;//仿函数实例化出的对象size_t hashi = hs(kv.first) % _tables.size();//获得目标值对应的下标while (_tables[hashi]._state == EXIST)//往后查找合适的位置插入{hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;//插入_tables[hashi]._state = EXIST;//改变状态_n++;//哈希表中的元素个数+1return true;
}

目前还有一个问题,那就是:如果哈希表满了怎么办?

如果哈希表满了,我们就要进行扩容操作,但是我们并不是在哈希表满的时候扩容。其实我们可以发现,当这个哈希表越满,我们查找数据的效率就越低,甚至说:如果查找一个不存在的数据,我们可能要用O(N)的复杂度遍历整个哈希表。因此我们因该把哈希表的负载率控制在一定值,当超过一定值,我们就要进行扩容操作。在此我把负载率控制在70%,负载率超过70%,我们就进行扩容:

if ((double)_n / _tables.size() >= 0.7)
{//扩容
}

要注意的是,_n_tables.size()都是整型,它们之间进行除法是整数除法,所以我们要把前者强制转化为double,让其进行小数除法。

对于扩容,我有两个方案:

  1. 新建一个更大的vector,把所有数值重新映射到哈希表中
  2. 新建一个更大的哈希表,把所有数值insert到哈希表中,然后把新的哈希表里面的vector交换给自己

两者对比,有一个重要的区别就是:我们已经写过哈希表的insert函数了,我们只要遍历一遍原哈希表的数据,就可以完成插入操作。但是对于vector,我们想要重新映射,就需要重写一个vector的映射逻辑。因此最好采用后者:

if ((double)_n / _tables.size() >= 0.7)
{size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT(newSize);for (auto& e : _tables){if (e._state == EXIST)newHT.Insert(e._kv);}_tables.swap(newHT._tables);
}

代码解析:

size_t newSize = _tables.size() * 2:
计算出新的哈希表的大小,这里采用二倍扩容


HashTable<K, V, Hash> newHT(newSize)
创建一个新的哈希表newHT,其大小为原哈希表的两倍


for (auto& e : _tables)
遍历原哈希表(其实就是遍历哈希表里面的数组)


if (e._state == EXIST) {newHT.Insert(e._kv)}
只要当前节点的值状态为EXIST,就把它插入到新表


_tables.swap(newHT._tables);
把新创建的哈希表的vector交换给当前哈希表。

这里有一个细节问题,那就是我们临时创建的哈希表newHT生命周期仅在这个if的括号内。当出了生命周期,newHT就会调用析构函数,自动销毁内部的vector,而我们把原先的较小的那个vector交换给了这个newHT,此时这个newHT还起到了销毁原先的小vector的功能

插入总代码:

bool Insert(const pair<K, V>& kv)
{if (Find(kv.first))return false;if ((double)_n / _tables.size() >= 0.7){size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT(newSize);for (auto& e : _tables){if (e._state == EXIST)newHT.Insert(e._kv);}_tables.swap(newHT._tables);}Hash hs;size_t hashi = hs(kv.first) % _tables.size();while (_tables[hashi]._state == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._state = EXIST;_n++;return true;
}

删除

删除也是一个比较简单的逻辑:

先通过Find接口找到要删除的值

  • 如果没找到,返回false,表示删除失败
  • 如果找到,把对应节点的状态改为DELETE

最后再把哈希表的_n - 1,表示存在的节点数少了一个。

代码如下:

bool Erase(const K& key)
{HashData<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;_n--;return true;}return false;
}

至此我们就完成了一个闭散列的哈希表。


总代码展示
template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};enum State
{EMPTY,EXIST,DELETE
};template<class K, class V>
struct HashData
{pair<K, V> _kv;State _state = EMPTY;//标记状态
};template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{
public:HashTable(size_t size = 10){_tables.resize(size);}HashData<K, V>* Find(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();while (_tables[hashi]._state != EMPTY){if (_tables[hashi]._kv.first == key&& _tables[hashi]._state == EXIST)return &_tables[hashi];hashi++;hashi %= _tables.size();}return nullptr;}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;if ((double)_n / _tables.size() >= 0.7){size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT(newSize);for (auto& e : _tables){if (e._state == EXIST)newHT.Insert(e._kv);}_tables.swap(newHT._tables);}Hash hs;size_t hashi = hs(kv.first) % _tables.size();while (_tables[hashi]._state == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._state = EXIST;_n++;return true;}bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;_n--;return true;}return false;}private:vector<HashData<K, V>> _tables;size_t _n = 0;//元素个数
};

开散列 - 哈希桶

其实闭散列并不是一个优秀的方案来处理哈希冲突,因为一个数值的位置被占用后,这个数值就会去占用别人的位置,这种拆东墙补西墙的行为,会导致恶性循环,查找的效率也很低。最差的情况实际复杂度会退化到O(N)。

在STL库中,采用的是更加优秀的开散列方案。

哈希表的数组vector中,不再直接存储数据,而是存储一个链表的指针。当一个数值映射到对应的下标后,就插入到这个链表中。其中每一个链表称为一个哈希桶,每个哈希桶中,存放着哈希冲突的元素。

在这里插入图片描述

一般而言,我们的链表使用单向链表就够了,因为一个哈希桶中一般不会出现太多元素。

现在我们来尝试实现这个开散列哈希表:


基本结构

对于每一个节点,其要存储当前节点的值,也要存储下一个节点的指针,基本结构如下:

template<class K, class V>
struct HashNode
{HashNode<K, V>* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv),_next(nullptr){}
};

_kv:节点存储但键值对
_next:指向下一个节点的指针

哈希表:

template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{typedef HashNode<K, V> Node;
public:HashTable(size_t size = 10){_tables.resize(size);}private:vector<Node*> _tables; //链表指针数组size_t _n = 0;//元素个数
};

基本结构和开散列是一致的,但是vector内部存储的不再是节点了,而是指向节点的指针Node*

对于这个哈希表,由于我们开辟了外部资源,所以我们还要自己写一个析构函数,防止内存泄漏:

~HashTable()
{for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}
}

基本逻辑就是遍历整个vector,然后把每个元素指向的链表都delete释放掉。


查找

查找的基本逻辑如下:

  1. 先通过哈希函数计算出数据对应的下标
  2. 通过下标找到对应的链表
  3. 遍历链表,找数据
  • 如果某个节点的数据匹配上了,返回该节点指针
  • 如果遍历到了nullptr,返回空指针表示没找到

代码如下:

Node* Find(const K& key)
{Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key)return cur;cur = cur->_next;}return nullptr;
}

这个很基础,就不详细解释了。


插入

插入的基本逻辑如下:

  1. 先通过Find接口,查找目标值在不在哈希表中,如果目标值已经存在,返回flse,表示插入失败
  2. 通过哈希函数计算出目标值对应的下标
  3. 向下标中插入数据

我们思考一个问题:我们将数据插入到链表中时,是头插还是尾插?
由于我们不知道访问同一个哈希桶中的数据时,会访问哪一个,所以哈希桶中数据的先后是没有区别的。但是尾插需要找尾,会增加插入的时间,因此我们直接头插就可以了。

代码如下:

bool Insert(const pair<K, V>& kv)
{if (Find(kv.first))return false;Hash hs;size_t hashi = hs(kv.first) % _tables.size();//计算下标Node* newNode = new Node(kv);//创建节点newNode->_next = _tables[hashi];//头插_tables[hashi] = newNode;++_n;//更新元素个数return true;
}

经过以上逻辑,我们就可以插入一个数据到哈希表中了。但是我们面临着相同的问题,如果哈希表太满,时间复杂度会发生退化,因此我们要在负载率过高时进行扩容。

与闭散列不同的是,开散列的哈希桶之间不会互相影响,因此这个负载率可以高一些。在STL中,其负载率控制在100%。

if (_n == _tables.size())//负载率100%
{//扩容
}

我们可以像之前一个,创建一个新的哈希表,然后把所有的值都插入进去,这当然是一个不错的办法。但是闭散列与开散列有一个很大的区别就是,哈希桶会额外创建大量的链表节点。如果我们单纯的进行插入,就要把原先的所有节点释放掉,再创建新的节点。这样会浪费很多时间。我们最好把原先创建的节点利用起来,因此我们要重写一个逻辑,把原先的节点进行迁移。

先创建一个新的vector

vector<Node*> newTables(_tables.size() * 2, nullptr);

新的vector的大小是原先的两倍,所有节点初始化为nullptr;

再用两层循环遍历所有节点:


for (size_t i = 0; i < _tables.size(); i++)
{Node* cur = _tables[i];while (cur){Node* next = cur->_next;cur = next;}
}

对于每一个节点,我们要得到它的值,然后计算出它在新的表中的下标,插入到对应的下标位置:

size_t hashi = hs(cur->_kv.first) % newTables.size();//计算下标cur->_next = newTables[hashi];//头插
newTables[hashi] = cur;//头插

要注意的是,我们每遍历完一个哈希桶,要把原先的vector中指向哈希桶的指针置空,否则原先的vector在销毁的时候,调用析构函数,会把我们转移的节点给销毁掉。

扩容总代码如下:

if (_n == _tables.size())
{vector<Node*> newTables(_tables.size() * 2, nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = hs(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];newTables[hashi] = cur;cur = next;}_tables[i] = nullptr; //防止移交的节点被析构}_tables.swap(newTables);
}

删除

删除逻辑:

  1. 通过哈希函数计算出对应的下标
  2. 到对应的哈希桶中查找目标值
  • 如果找到,删除对应的节点
  • 如果没找到,返回false表示删除失败
  1. _n - 1表示删除了一个元素

代码如下:

bool Erase(const K& key)
{Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if (prev)prev->_next = cur->_next;else_tables[hashi] = cur->_next;delete cur;--_n;return true;}prev = cur;cur = cur->_next;}return false;
}

这个逻辑也比较简单,但是要注意的是,我们删除链表节点后,要把这个节点的前后连接起来,所以我们需要一个额外的parent来标识前面一个节点。


代码展示
template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};template<class K, class V>
struct HashNode
{HashNode<K, V>* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv),_next(nullptr){}
};template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{typedef HashNode<K, V> Node;
public:HashTable(size_t size = 10){_tables.resize(size);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}Node* Find(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key)return cur;cur = cur->_next;}return nullptr;}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;Hash hs;//哈希桶情况下,负载因子到1才扩容if (_n == _tables.size()){vector<Node*> newTables(_tables.size() * 2, nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = hs(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];newTables[hashi] = cur;cur = next;}_tables[i] = nullptr; //防止移交的节点被析构}_tables.swap(newTables);}size_t hashi = hs(kv.first) % _tables.size();Node* newNode = new Node(kv);newNode->_next = _tables[hashi];_tables[hashi] = newNode;++_n;return true;}bool Erase(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if (prev)prev->_next = cur->_next;else_tables[hashi] = cur->_next;delete cur;--_n;return true;}prev = cur;cur = cur->_next;}return false;}private:vector<Node*> _tables; //链表指针数组size_t _n = 0;//元素个数
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/766565.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

宋仕强论道之华强北科技创新说

宋仕强论道之华强北科技创新说&#xff0c;“创新”是深圳市和华强北灵魂&#xff0c;创新再加上敢想敢干永不言败&#xff0c;造就了深圳市经济奇迹和华强北财富神话&#xff01;首次在深圳市落槌的“土地拍卖”&#xff0c;华强北“一米柜台”赋予独立经营权&#xff0c;把最…

通过jsDelivr实现Github的图床CDN加速

最近小伙伴们是否发现访问我的个人博客http://xiejava.ishareread.com/图片显示特别快了&#xff1f; 我的博客的图片是放在github上的&#xff0c;众所周知的原因&#xff0c;github访问不是很快&#xff0c;尤其是hexo博客用github做图床经常图片刷不出来。一直想换图床&…

提面 | 面试抽题

学习到更新日期面试抽题-1.2案例分析的思维本质2024-3-23 1提面抽屉论述问题的分类 1.1案例分析占总论 1.2案例分析的思维本质

rabbitmq 3.9.29 docker mac 管理员页面无法打开

SyntaxError: Unexpected token ‘catch’ SyntaxError: Unexpected token ‘catch’ at EJS.Compiler.compile (http://127.0.0.1:15672/js/ejs-1.0.min.js:1:6659) at new EJS (http://127.0.0.1:15672/js/ejs-1.0.min.js:1:1625) at format (http://127.0.0.1:15672/js/main…

【docker系列】深入理解 Docker 容器管理与清理

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

llvm后端

SelectionDAGBuilder是LLVM&#xff08;Low Level Virtual Machine&#xff09;编译器中的一个重要组件&#xff0c;它负责将LLVM中间表示&#xff08;Intermediate Representation&#xff0c;IR&#xff09;转换为SelectionDAG&#xff08;选择有向无环图&#xff09;的形式。…

java selenium 元素点击不了

最近做了一个页面爬取&#xff0c;很有意思被机缘巧合下解决了。 这个元素很奇怪&#xff0c;用xpath可以定位元素&#xff0c;但是就是click()不了。 试过了网上搜的一些办法&#xff1a; //尝试一 WebElement a_tag driver.findElement(By.xpath("xxx")); a_tag…

适合马犬吃的狗粮有哪些?

亲爱的朋友们&#xff0c;你们是不是也在为家里的马犬挑选合适的狗粮而犯愁呢&#xff1f;&#x1f436;&#x1f35a; 今天&#xff0c;我就来和大家分享一下适合马犬吃的狗粮有哪些&#xff0c;以及为什么我要特别推荐福派斯鲜肉无谷狗粮。 首先&#xff0c;我们得了解马犬的…

ArmSoM-Sige RK3588开发板产品简介

让我们在 5 分钟内了解 Sige7。 简介​ ArmSoM-Sige7采用Rockchip RK3588新一代旗舰级八核64位处理器&#xff0c;主频高达2.4GHz&#xff0c;6 TOPS算力NPU&#xff0c;最大可配32GB大内存。支持8K视频编解码&#xff0c;拥有丰富的接口&#xff0c;支持双2.5G网口、WiFi6 &…

【leetcode热题】 二叉树的右视图

给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 示例 1: 输入: [1,2,3,null,5,null,4] 输出: [1,3,4]示例 2: 输入: [1,null,3] 输出: [1,3]示例 3: 输入: [] 输出: []解法一 题…

InstructGPT的流程介绍

1. Step1&#xff1a;SFT&#xff0c;Supervised Fine-Tuning&#xff0c;有监督微调。顾名思义&#xff0c;它是在有监督&#xff08;有标注&#xff09;数据上微调训练得到的。这里的监督数据其实就是输入Prompt&#xff0c;输出相应的回复&#xff0c;只不过这里的回复是人工…

element-ui checkbox 组件源码分享

简单分享 checkbox 组件&#xff0c;主要从以下三个方面来分享&#xff1a; 1、组件的页面结构 2、组件的属性 3、组件的方法 一、组件的页面结构 二、组件的属性 2.1 value / v-model 属性&#xff0c;绑定的值&#xff0c;类型 string / number / boolean&#xff0c;无…

Spring单元测试+Mockito

一&#xff0c;背景 单元测试基本上是开发逃不过的一个工作内容&#xff0c;虽然往往因为过于无聊&#xff0c;或者过于麻烦&#xff0c;而停止于项目的迭代之中&#xff0c;不了了之了。其实不是开发们懒&#xff0c;而是上头要求的测试覆盖率高&#xff0c;但是又没有好用的…

Stable Diffusion 本地训练端口与云端训练端口冲突解决办法

方法之一&#xff0c;修改本地训练所用的端口 1 首先&#xff0c;进入脚本训练器的根目录 例如&#xff1a;C:\MarkDeng\lora-scripts-v1.7.3 找到gui.py 2 修改端口号 因为云端训练器也是占用28000和6006端口 那么本地改成27999和6007也是可以的 保存退出&#xff0c;运行启动…

扩展一下BenchmarkSQL,新增支持ASE/HANA/DB2/SQLServer,可以随便用了

1 背景 提到数据库的性能,自然就避不开性能测试。有专用于测试OLTP的,也有偏重于OLAP的。本文介绍的BenchmarkSQL就属于测试OLTP中的一个,基于TPCC的。网上有很多介绍TPC*的相关测试的文章,大家可以自行脑补。而PostgreSQL自带的pgbench是属于TPCC的前一个基准测试程序,偏…

机器学习基础知识面经(个人记录)

朴素贝叶斯 特征为理想状态下的独立同分布&#xff0c;作为机器学习的重要基石和工具 由贝叶斯公式推导而来 是后验概率&#xff1a;在B发生的条件下A发生的概率。 是似然概率: 在 发生的条件下 发生的概率。 是先验概率: 发生的概率&#xff0c;而不考虑 的影响。 是…

【PyQt】17.1-日历控件 不同风格的日期和时间、以及高级操作

日历控件puls版本 前言一、日历控件中不同风格的日期和时间1.1 代码1.2 注意事项格式设置m的大小写问题QTime和QDateTime的区别 1.3 运行结果 二、高级操作2.1 成倍调整2.2 下拉出日历2.3 事件函数2.4 获取设置的日期和时间 完整代码 前言 1、不同风格的日期和时间展示 2、高级…

uni-app里面如何使用图标

目录 一、导入 1.在官方&#xff08;iconfont-阿里巴巴矢量图标库&#xff09;选择自己想要的图标&#xff0c;加入购物车 2. 在点击购物车下载代码 3.解压文件夹 并更改名字 4.将文件夹&#xff08;iconfont&#xff09;整个放到项目中的static中 5.修改iconfont.css文件…

超越工具的限制!菜鸟工具箱帮你节省时间

在这个飞速发展的时代&#xff0c;我们越来越依赖各种工具来提高工作效率和解决问题。然而&#xff0c;你是否意识到&#xff0c;有些工具不仅仅是工具&#xff0c;它们还能为你带来更多的可能性和机遇&#xff1f;菜鸟工具箱就是这样一个超越工具本身的存在&#xff01; 菜鸟工…

目标检测的指标评估

目标检测模型的评价指标主要用于衡量模型的性能&#xff0c;特别是它在定位和识别目标方面的准确性。以下是一些常见的评价指标&#xff1a; 1. 精确度 (Precision): 表示检测到的目标中&#xff0c;正确检测到的目标所占的比例。精确度高意味着模型产生的误报&#xff08;错误…