【保姆级教程】YOLOv8目标检测:训练自己的数据集

一、YOLOV8环境准备

1.1 下载安装最新的YOLOv8代码

 仓库地址: https://github.com/ultralytics/ultralytics

1.2 配置环境

  pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

二、数据准备

2.1 安装labelme标注软件

pip install labelme

2.1.2 打开LabelImg软件

使用Anaconda Prompt启动labeme标注工具

在这里插入图片描述

2.2 标注自己的数据

在这里插入图片描述

2.3 数据处理

2.3.1 运行下面代码,将json格式标签转为txt格式标签

先创建txt文件夹,整体目录如下
在这里插入图片描述

import json
import osname2id = {
"-":0,
"0":1,
"1":2,
"2":3,
"3":4,
"4":5,
"5":6,
"6":7,
"7":8,
"8":9,
"9":10,
"A":11,
"B":12,
"C":13,
"D":14,
"E":15,
"F":16,
"G":17,
"H":18,
"I":19,
"J":20,
"K":21,
"L":22,
"M":23,
"N":24,
"O":25,
"P":26,
"Q":27,
"R":28,
"S":29,
"T":30,
"U":31,
"V":32,
"W":33,
"X":34,
"Y":35,
"Z":36}def convert(img_size, box):dw = 1./(img_size[0])dh = 1./(img_size[1])x = (box[0] + box[2])/2.0 - 1y = (box[1] + box[3])/2.0 - 1w = box[2] - box[0]h = box[3] - box[1]x = x*dww = w*dwy = y*dhh = h*dhx = round(x, 3)w = round(w, 3)y = round(y, 3)h = round(h, 3)return (x,y,w,h)def decode_json(json_floder_path,json_name):# 需要手动新建下面目录的文件夹,根据自己实际情况而定txt_name = 'D:\\data\\slot-number\\wanda\\txt\\' + json_name[0:-5] + '.txt'txt_file = open(txt_name, 'w')json_path = os.path.join(json_floder_path, json_name)data = json.load(open(json_path, 'r', encoding='gb2312'))img_w = data['imageWidth']img_h = data['imageHeight']for i in data['shapes']:label_name = i['label']if (i['shape_type'] == 'rectangle'):x1 = int(i['points'][0][0])y1 = int(i['points'][0][1])x2 = int(i['points'][1][0])y2 = int(i['points'][1][1])bb = (x1,y1,x2,y2)bbox = convert((img_w,img_h),bb)txt_file.write(str(name2id[label_name]) + " " + " ".join([str(a) for a in bbox]) + '\n')if __name__ == "__main__":# D:\\data\\slot-number\\wanda\\json存放了labelme标注生成的json文件的文件夹json_floder_path = 'D:\\data\\slot-number\\wanda\\json'json_names = os.listdir(json_floder_path)for json_name in json_names:decode_json(json_floder_path,json_name)

查看转换后生成的yolo格式的txt标签文件
在这里插入图片描述
在这里插入图片描述

2.3.2 运行下面代码,划分数据集

在这里插入图片描述
在这里插入图片描述

# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
import argparse# 检查文件夹是否存在
def mkdir(path):if not os.path.exists(path):os.makedirs(path)def main(image_dir, txt_dir, save_dir):# 创建文件夹mkdir(save_dir)images_dir = os.path.join(save_dir, 'images')labels_dir = os.path.join(save_dir, 'labels')img_train_path = os.path.join(images_dir, 'train')img_test_path = os.path.join(images_dir, 'test')img_val_path = os.path.join(images_dir, 'val')label_train_path = os.path.join(labels_dir, 'train')label_test_path = os.path.join(labels_dir, 'test')label_val_path = os.path.join(labels_dir, 'val')mkdir(images_dir);mkdir(labels_dir);mkdir(img_train_path);mkdir(img_test_path);mkdir(img_val_path);mkdir(label_train_path);mkdir(label_test_path);mkdir(label_val_path);# 数据集划分比例,训练集75%,验证集15%,测试集15%,按需修改train_percent = 0.8val_percent = 0.1test_percent = 0.1total_txt = os.listdir(txt_dir)num_txt = len(total_txt)list_all_txt = range(num_txt)  # 范围 range(0, num)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# 在全部数据集中取出trainval_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{},测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = os.path.join(image_dir, name + '.png')srcLabel = os.path.join(txt_dir, name + '.txt')if i in train:dst_train_Image = os.path.join(img_train_path, name + '.png')dst_train_Label = os.path.join(label_train_path, name + '.txt')shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)elif i in val:dst_val_Image = os.path.join(img_val_path, name + '.png')dst_val_Label = os.path.join(label_val_path, name + '.txt')shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)else:dst_test_Image = os.path.join(img_test_path, name + '.png')dst_test_Label = os.path.join(label_test_path, name + '.txt')shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)if __name__ == '__main__':parser = argparse.ArgumentParser(description='split datasets to train,val,test params')parser.add_argument('--image-dir', type=str,default='D:/data/slot-number/wanda/image', help='image path dir')parser.add_argument('--txt-dir', type=str,default='D:/data/slot-number/wanda/txt' , help='txt path dir')parser.add_argument('--save-dir', default='D:/study/cnn/yolo/ultralytics/dataset',type=str, help='save dir')args = parser.parse_args()image_dir = args.image_dirtxt_dir = args.txt_dirsave_dir = args.save_dirmain(image_dir, txt_dir, save_dir)

2.3.3 使用脚本,获取训练集,验证集的txt标签的路径

三、配置文件设置

3.1 修改coco8.yaml

修改ultralytics\ultralytics\cfg\datasets\coco8.yaml配置文件内容:(建议使用绝对路径)

path: D:/data/slot-number/
train: images/train
val: images/val
test:names:0: sign -1: nubmer 02: nubmer 13: nubmer 24: nubmer 35: nubmer 46: nubmer 57: nubmer 68: nubmer 79: nubmer 810: nubmer 911: A12: B13: C14: D15: E16: F17: G18: H19: I20: J21: K22: L23: M24: NN25: O26: P27: Q28: R29: S30: T31: U32: V33: W34: X35: YY36: Z

四、训练

4.1 下载预训练权重

在YOLOv8 github上下载预训练权重:yolov8n.pt,ultralytics\ultralytics\路径下,新建weights文件夹,预训练权重放入其中。
在这里插入图片描述

4.2 训练

步骤一:修改ultralytics\ultralytics\cfg\default.yaml文件中的训练参数(根据自己的实际情况决定)
步骤二:执行下面代码:(建议使用绝对路径)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/765884.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

React系列 之 React进阶 含源码解读 (一)事件合成、state原理

资料来源:掘金课程 https://juejin.cn/book/6945998773818490884?enter_fromcourse_center&utm_sourcecourse_center 记录一些笔记 事件合成 React的事件其实是React重新实现的一套事件系统。目标是统一管理事件,提供一种跨浏览器一致性的事件处…

langchain4j DefaultAiServices源码解析

版本 0.28.0 源码 使用langchain4j,可以通过AiServices来封装聊天模型API,实现会话记忆,工具调用,搜索增强,内容审查等功能,并提供简单灵活的用户接口 DefaultAiServices是其默认实现类型,通…

5G智能网关助力工业铸造设备监测升级

随着物联网技术的迅猛发展和工业4.0浪潮的推进,传统工业正面临着严峻的转型升级压力。在这一背景下,铸造行业——这一典型的传统重工业领域,也必须积极探索借助5G、物联网、边缘计算等技术提升生产经营效率的新路径。 本文就基于佰马合作伙伴…

【技巧】ChatGPT Prompt 提示语大全

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] 主要来自:https://github.com/f/awesome-chatgpt-prompts ChatGPT SEO提示 Contributed by: StoryChief AI Reference: 7 Powerful ChatGPT Prompts to Create SEO Content Faster 供稿人:…

MyBatis Plus笔记

1、删除 物理删除:从硬盘上直接删除掉 。好处:数据条数少了,不好的地方在于可能会影响到基于这条数据产生的记录 逻辑删除:假删除 两个区别: 删除时 之前:DELETE from sys_user …

链表oj测试题(上)

链表的申明: struct ListNode {int val;struct ListNode* next; }; 1.题1 删除指定元素 例如:链表1 2 6 3 4 5 6,然后选择删除元素6,返回的链表为1 2 3 4 5 。 代码演示: typedef struct ListNode ListNode;List…

Spark与flink计算引擎工作原理

Spark是大批量分布式计算引擎框架,scale语言开发的,核心技术是弹性分布式数据集(RDD)可以快速在内存中对数据集进行多次迭代,支持复杂的数据挖掘算法及图形计算算法,spark与Hadoop区别主要是spark多个作业之…

什么是行业垂直类媒体?有哪些?怎么邀约

传媒如春雨,润物细无声,大家好,我是51媒体胡老师。 行业垂直类媒体是聚焦于特定行业或领域的媒体平台。 行业垂直类媒体不同于主流媒体,它们专注于提供与某个特定领域相关的深入内容和服务,例如商业新闻、旅游、数字…

能拍英语的搜题软件?九个免费好用的大学生搜题工具 #经验分享#知识分享#其他

积极参加社团活动和实践项目,可以帮助大学生拓宽人脉圈和锻炼实际操作能力。 1.粉鹿搜题 这是一个公众号 搜题拥有非常强大的题库,包含IT认证、建筑工程:、会计资格、教师资格、研究生、公务员等类型的题目。 下方附上一些测试的试题及答案 1、BPR基…

面试算法-79-搜索旋转排序数组

题目 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nums[1…

Qt 利用共享内存实现一次只能启动一个程序(单实例运行)

Qt 利用共享内存实现一次只能启动一个程序 文章目录 Qt 利用共享内存实现一次只能启动一个程序摘要利用共享内存实现一次只能启动一个程序示例代码 关键字&#xff1a; Qt、 unique、 单一、 QSharedMemory、 共享内存 摘要 今天接着在公司搞我的屎山代码&#xff0c;按照…

[MAUI]集成高德地图组件至.NET MAUI Blazor项目

文章目录 前期准备&#xff1a;注册高德开发者并创建 key登录控制台创建 key获取 key 和密钥 创建项目创建JS API Loader配置权限创建定义创建模型创建地图组件创建交互逻辑 项目地址 地图组件在手机App中常用地理相关业务&#xff0c;如查看线下门店&#xff0c;设置导航&…

LeetCode 热题 100 | 堆(二)

目录 1 什么是优先队列 1.1 优先队列与堆的关系 1.2 如何定义优先队列 1.3 如何使用优先队列 1.4 如何设置排序规则 2 347. 前 K 个高频元素 2.1 第 2 步的具体实现 2.2 举例说明 2.3 完整代码 3 215. 数组中的第 K 个最大元素 - v2 菜鸟做题&#xff0c;语…

Shell学习

一、 变量 shell是弱类型语言&#xff0c;不用定义数据类型&#xff0c;默认都是字符串。 变量与值之间不得有空格 只能包含数字、字母、下划线 不能以数字开头 区分大小写 根据变量的作用域可以将shell变量分为&#xff1a;全局变量、局部变量、环境变量。全局变量通常和…

app自动化测试怎么学?

app测试的主要内容有那些 1、功能测试 : 查看功能是否正常&#xff0c;主要针对每一个功能点进行一一测试&#xff0c;主要核心就是把验证的每个测试点都满足需求的对应功能&#xff0c;验证标准就是让预期结果和实际结果保持一致。 2、安装卸载测试&#xff1a;首先要测试的…

【Linux】从零认识进程 — 中下篇

送给大家一句话&#xff1a; 人一切的痛苦&#xff0c;本质上都是对自己无能的愤怒。而自律&#xff0c;恰恰是解决人生痛苦的根本途径。—— 王小波 从零认识进程 1 进程优先级1.1 什么是优先级1.2 为什么要有优先级1.3 Linux优先级的特点 && 查看方式1.4 其他概念 2…

深度解析深度学习中的长短期记忆网络(LSTM)(含代码实现)

在深度学习中&#xff0c;长短期记忆网络&#xff08;LSTM&#xff09;是一种强大的循环神经网络结构&#xff0c;能够更好地处理长序列数据并减轻梯度消失的问题。本文将介绍LSTM的工作原理&#xff0c;并使用PyTorch实现一个简单的LSTM模型来展示其在自然语言处理中的应用。 …

MongoDB完全开发手册(一篇学会MongoDB所有知识点)

目录 一、MongoDB 基础 1.1 、MongoDB 是什么&#xff1f; 1.2、 MongoDB 的存储结构是什么&#xff1f; 1.3 、文档 1.4 、集合 1.5 、数据库 1.6、 MongoDB 有什么特点&#xff1f; 1.7、 MongoDB 适合什么应用场景&#xff1f; 二、MongoDB 存储引擎 2.1 、MongoDB…

Autosar Crypto Interface学习笔记

文章目录 前言Functional specificationError classificationError detection API specificationType DefinitionsFunction definitionsGeneral APICryIf_InitCryIf_GetVersionInfo Job Processing InterfaceCryIf_ProcessJobDispatch Key IDs匹配KeyId Job Cancellation Inter…

【嵌入式——QT】Charts常见的图表的绘制

【嵌入式——QT】Charts常见的图表的绘制 柱状图QBarSetQBarSeriesQBarCategoryAxis图示 饼图堆叠柱状图百分比柱状图散点图和光滑曲线图代码示例 柱状图 QBarSet 用于创建柱状图的数据集。 主要函数 setLabel()&#xff1a;设置数据集标签 &#xff1b;setLabelBrush()&am…