数据结构、算法总述:数据结构/算法 C/C++-CSDN博客
目录
朴素dijkstra算法
堆优化版dijkstra算法
Bellman-Ford算法
spfa 算法(队列优化的Bellman-Ford算法)
spfa判断图中是否存在负环
floyd算法
朴素dijkstra算法
思路:
集合S为已经确定最短路径的点集。
- 初始化距离
一号结点的距离为零,其他结点的距离设为无穷大。- 循环n次,每一次将集合S之外距离最短X的点加入到S中去(这里的距离最短指的是距离1号点最近。点X的路径一定最短,基于贪心)。然后用点X更新X邻接点的距离。
int g[N][N]; // 存储每条边
int dist[N]; // 存储1号点到每个点的最短距离
bool st[N]; // 存储每个点的最短路是否已经确定// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;for (int i = 0; i < n - 1; i ++ ){int t = -1; // 在还未确定最短路的点中,寻找距离最小的点for (int j = 1; j <= n; j ++ )if (!st[j] && (t == -1 || dist[t] > dist[j]))t = j;// 用t更新其他点的距离for (int j = 1; j <= n; j ++ )dist[j] = min(dist[j], dist[t] + g[t][j]);st[t] = true;}if (dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}
题目:
849. Dijkstra求最短路 I - AcWing题库https://www.acwing.com/problem/content/description/851/
堆优化版dijkstra算法
思路:
- 一号点的距离初始化为零,其他点初始化成无穷大。
- 将一号点放入堆中。
- 不断循环,直到堆空。每一次循环中执行的操作为:
弹出堆顶(与朴素版diijkstra找到S外距离最短的点相同,并标记该点的最短路径已经确定)。
用该点更新临界点的距离,若更新成功就加入到堆中。
typedef pair<int, int> PII;int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;priority_queue<PII, vector<PII>, greater<PII>> heap;heap.push({0, 1}); // first存储距离,second存储节点编号while (heap.size()){auto t = heap.top();heap.pop();int ver = t.second, distance = t.first;if (st[ver]) continue;st[ver] = true;for (int i = h[ver]; i != -1; i = ne[i]){int j = e[i];if (dist[j] > distance + w[i]){dist[j] = distance + w[i];heap.push({dist[j], j});}}}if (dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}
题目:
850. Dijkstra求最短路 II - AcWing题库https://www.acwing.com/problem/content/852/
Bellman-Ford算法
Bellman - ford 算法是求含负权图的单源最短路径的一种算法,效率较低,代码难度较小。其原理为连续进行松弛,在每次松弛时把每条边都更新一下,若在 n-1 次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成。
(通俗的来讲就是:假设 1 号点到 n 号点是可达的,每一个点同时向指向的方向出发,更新相邻的点的最短距离,通过循环 n-1 次操作,若图中不存在负环,则 1 号点一定会到达 n 号点,若图中存在负环,则在 n-1 次松弛后一定还会更新)
松弛操作:对于图中的每一条边,如果通过这条边可以使得达到某个顶点的距离更短,则更新这个顶点的最短路径估计值和前驱节点。
步骤:
for n次
for 所有边 a,b,w (松弛操作)
dist[b] = min(dist[b],back[a] + w)注意:back[] 数组是上一次迭代后 dist[] 数组的备份,由于是每个点同时向外出发,因此需要对 dist[] 数组进行备份,若不进行备份会因此发生串联效应,影响到下一个点
int n, m; // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{int a, b, w;
}edges[M];// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。for (int i = 0; i < n; i ++ ){for (int j = 0; j < m; j ++ ){int a = edges[j].a, b = edges[j].b, w = edges[j].w;if (dist[b] > dist[a] + w)dist[b] = dist[a] + w;}}if (dist[n] > 0x3f3f3f3f / 2) return -1;return dist[n];
}
题目:
AcWing 853. 有边数限制的最短路 - AcWinghttps://www.acwing.com/activity/content/problem/content/922/
spfa 算法(队列优化的Bellman-Ford算法)
步骤:
- 初始化:与Bellman-Ford算法相同,将所有节点的最短路径估计值设置为无穷大,只将源点设为0。
- 创建一个队列,并将源点加入队列。
- 当队列非空时,进行以下操作:
从队列中取出一个顶点u。
对于从顶点u出发的每一条边u-v,如果通过这条边可以使得达到顶点v的距离更短,则更新顶点v的最短路径估计值和前驱节点,并将顶点v加入队列。- 重复步骤3,直到队列为空。
- 如果在队列为空之后,再次对所有的边进行一次松弛操作,如果还能继续松弛,说明图中存在负权回路。
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储每个点到1号点的最短距离
bool st[N]; // 存储每个点是否在队列中// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;queue<int> q;q.push(1);st[1] = true;while (q.size()){auto t = q.front();q.pop();st[t] = false;for (int i = h[t]; i != -1; i = ne[i]){int j = e[i];if (dist[j] > dist[t] + w[i]){dist[j] = dist[t] + w[i];if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入{q.push(j);st[j] = true;}}}}if (dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}
题目:
851. spfa求最短路 - AcWing题库https://www.acwing.com/problem/content/853/
spfa判断负环
什么时候出现负环
在求从1到x的最短路中,最多有n - 1条边(也就是历经n个点)如果中间出现>=n条边的话
就会出现负环(根据抽屉原理)抽屉原理:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。
维护cnt数组的作用:
记录每个点到起点的边数,当cnt[i] >= n 表示出现了边数>=结点数,必然有环,而且一定是负环!
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N]; // 存储每个点是否在队列中// 如果存在负环,则返回true,否则返回false。
bool spfa()
{// 不需要初始化dist数组// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。queue<int> q;for (int i = 1; i <= n; i ++ ){q.push(i);st[i] = true;}while (q.size()){auto t = q.front();q.pop();st[t] = false;for (int i = h[t]; i != -1; i = ne[i]){int j = e[i];if (dist[j] > dist[t] + w[i]){dist[j] = dist[t] + w[i];cnt[j] = cnt[t] + 1;if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环if (!st[j]){q.push(j);st[j] = true;}}}}return false;
}
题目:
852. spfa判断负环 - AcWing题库https://www.acwing.com/problem/content/854/
floyd算法
Floyd-Warshall算法的核心思想是逐步推算出任意两个顶点之间的最短路径。算法首先假设所有顶点对之间的路径长度都是无穷大,然后逐步更新这些长度值,直到找到所有顶点对之间的最短路径。
初始化:for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )if (i == j) d[i][j] = 0;else d[i][j] = INF;// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{for (int k = 1; k <= n; k ++ )for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
题目:
854. Floyd求最短路 - AcWing题库https://www.acwing.com/problem/content/856/