公募基金公开市场数据基础分析实例

公募基金公开市场数据基础分析
公募基金公开市场数据基础分析示例代码1.1 公开市场数据表结构
字段	字段类型	含义
SecurityID	SYMBOL	基金代码
FullName	STRING	基金全称
Name	STRING	基金简称
Management	SYMBOL	基金公司
Type	SYMBOL	基金类型
Custodian	SYMBOL	托管人
IssueShare	DOUBLE	成立规模
InceptDate	DATE	成立日期
MFee	DOUBLE	管理费率
CFee	DOUBLE	托管费率
SFee	DOUBLE	销售服务费率
Closed	DOUBLE	封闭期
Status	INT	状态
字符串字段使用 SYMBOL 类型和 STRING 类型存储的差异,参考:数据类型 — DolphinDB 2.0 文档的字符串部分内容。1.2 公开市场数据导入
截止 20227 月,已经面市的公募基金总数约 1 万多只,公开市场数据表的行数与面市公募基金总数相等,所以这个表的数据量相对比较小,建议使用 DolphinDB 的维度表进行存储。以 csv 数据文件导入 DolphinDB 维度表为例,具体代码如下:10 万行以下的单表数据建议用 DolphinDB 的维度表存储。csvDataPath = "/ssd/ssd2/data/fundData/publicFundData.csv"
dbName = "dfs://publicFundDB"
tbName = "publicFundData"
// create database and one-partition table
if(existsDatabase(dbName)){dropDatabase(dbName)
}
timeRange = 1990.01.01 join sort(distinct(yearBegin(2016.01.01..2050.01.01)))
db = database(dbName, RANGE, timeRange, engine = 'TSDB')
names = `SecurityID`FullName`Name`Management`Type`Custodian`IssueShare`InceptDate`MFee`CFee`SFee`Closed`Status
types = `SYMBOL`STRING`STRING`SYMBOL`SYMBOL`SYMBOL`DOUBLE`DATE`DOUBLE`DOUBLE`DOUBLE`DOUBLE`INT
schemaTB = table(1:0, names, types)
db.createTable(table=schemaTB, tableName=tbName, sortColumns=`InceptDate)
// load CSV data
tmp = ploadText(filename=csvDataPath, schema=table(names, types))
loadTable(dbName, tbName).append!(tmp)
1.3 公开市场数据基础分析
1.3.1 数据概览
数据导入后,可以执行相关 SQL 语句对维度表数据进行预览,执行下述代码加载包含元数据的表对象,此步骤并未加载维度表数据到内存,所以执行耗时非常短,变量 fundData 几乎不占用内存资源:fundData = loadTable("dfs://publicFundDB", "publicFundData")
查询维度表中的前 10 条记录,并将查询数据一次性从服务端取到客户端后在 Data Browser 显示:如果单次 SQL 查询返回的结果较大,必须将查询的结果返回给一个变量,然后双击 GUI 的 Variables 进行分页查看,因为分页查看的话数据是分段传输的,而不是一次性从服务端传输回客户端,避免 GUI 客户端被阻塞的情况。select top 10 * from fundData
01.publicFundDataTop10因为公开市场数据表中的总数据量比较小,所以可以对其进行全表查询,并将返回的查询结果赋值给一个内存表变量 publicFundData,然后双击 GUI 的 Variables 处的 publicFundData 进行数据分页浏览:publicFundData = select * from fundData
02.publicFundData1.3.2 查询综合费率最低的基金
在选购基金的时候,综合费率也会是投资者考量的因素之一。针对上述公开市场数据,综合费率为管理费率、托管费率和销售服务费率的总和:查询公开数据表的数据,并计算综合费率 Fee,最终将查询结果赋值给内存表变量 fundFee , 具体代码如下:fundFee = select *, (MFee + CFee + SFee) as Fee from fundData
查询综合费率最低的 50 只债券型公募基金, 具体代码如下:select top 50 * from fundFee where Type == "债券型" order by Fee
查询综合费率最低的 50 只债券型且不是指数型的公募基金, 具体代码如下:select top 50 * from  fundFee where Type == "债券型", not(FullName like "%指数%") order by Fee
1.3.3 按基金类型分组后的信息摘要
DolphinDB 的 stat 函数可以快速生成数据的统计信息,包括平均值、最大值、最小值、计数、中位数和标准差等,quantile 函数可以快速计算分位数,可以通过 def 自定义一个信息摘要统计函数,然后对 Type 列进行分组计算,具体代码如下:// user defined summary statistics function
def describe(x){y = stat(x)q_25 = quantile(x, 0.25)q_50 = quantile(x, 0.50)q_75 = quantile(x, 0.75)return y.Count join y.Avg join y.Stdev join y.Min join q_25 join q_50 join q_75 join y.Max join y.Median}// query the summary of public fund fees
select describe(Fee) as `count`mean`std`min`q_25`q_50`q_75`max`median from fundFee group by Type
03.fundFeeSummary1.3.4 按基金类型分组后的分布直方图
/**plot fees histogram*/
// Type="REITs"
(exec Fee from fundFee where Type="REITs").plotHist(binNum=100)
// Type="保本型"
(exec Fee from fundFee where Type="保本型").plotHist(binNum=100)
// Type="债券型"
(exec Fee from fundFee where Type="债券型").plotHist(binNum=100)
// Type="另类投资型"
(exec Fee from fundFee where Type="另类投资型").plotHist(binNum=100)
// Type="商品型"
(exec Fee from fundFee where Type="商品型").plotHist(binNum=100)
// Type="混合型"
(exec Fee from fundFee where Type="混合型").plotHist(binNum=100)
// Type="股票型"
(exec Fee from fundFee where Type="股票型").plotHist(binNum=100)
// Type="货币市场型"
(exec Fee from fundFee where Type="货币市场型").plotHist(binNum=100)
04.feesHistogram

参考:https://gitee.com/dolphindb/Tutorials_CN/blob/master/public_fund_basic_analysis.md#1-%E5%85%AC%E5%8B%9F%E5%9F%BA%E9%87%91%E5%85%AC%E5%BC%80%E5%B8%82%E5%9C%BA%E6%95%B0%E6%8D%AE%E5%9F%BA%E7%A1%80%E5%88%86%E6%9E%90

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/765335.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI大模型在医疗领域的应用案例:自然语言处理与医疗文本分析

随着人工智能技术的快速发展,AI大模型在自然语言处理、图像识别、语音识别等领域的应用越来越广泛。在医疗领域,AI大模型的应用正在深刻改变着医疗实践,为患者和医生带来前所未有的便利。近期AI医疗的概念也比较火热,本文将聚焦于…

编程题:相同数字的积木游戏(Java)

题目描述 小华和小薇一起通过玩积木游戏学习数学。 他们有很多积木,每个积木块上都有一个数字,积木块上的数字可能相同。 小华随机拿一些积木挨着排成一排,请小薇找到这排积木中数字相同目所处位置最远的2块积木块,计算他们的…

css的border详解

CSS的border属性是一个简写属性,用于设置以下四个边框属性: border-width:定义边框的宽度。可以使用具体的像素值,或者使用预定义的关键字如thin、medium和thick。border-width不支持百分比值。默认情况下,边框的宽度是…

在线文本列表差集计算器

具体请前往:在线文本差集计算工具

system Verilog:clocking中定义信号为input和output的区别

在SystemVerilog中,clocking块用于定义时钟块,这通常用于描述时钟边缘和同步的输入/输出行为,特别是在测试平台和硬件接口描述中。 在下述两个代码示例中,主要区别在于a被定义为一个input还是output。 当a被定义为input时&#x…

云计算 3月22号 (mysql的主从复制)

一、MySQL-Replication(主从复制) 1.1、MySQL Replication 主从复制(也称 AB 复制)允许将来自一个MySQL数据库服务器(主服务器)的数据复制到一个或多个MySQL数据库服务器(从服务器)…

优化选址问题 | 基于禁忌搜索算法求解基站选址问题含Matlab源码

目录 问题代码问题 禁忌搜索算法(Tabu Search)是一种局部搜索算法的扩展,它通过引入一个禁忌列表来避免陷入局部最优解,并允许在一定程度上接受较差的解来跳出局部最优。在基站选址问题中,我们可以使用禁忌搜索算法来寻找满足覆盖要求且基站数量最少的选址方案。 以下是…

Allegro许可管理技巧

在数字化时代,软件许可管理对于企业的运营至关重要。然而,许多企业在实施软件管理过程中会遇到各种问题。Allegro许可管理作为一款高效、合规的管理工具,能够帮助企业解决常见的许可管理问题。本文将深入探讨Allegro许可管理中的实用技巧&…

活用C语言之宏定义应用大全

零、C语言宏定义知多少 C语言的编程过程中经常会用到宏定义,然而如果你只是使用宏定义做一些常量的定义,那么你不是OUT了就是C语言小白。 那么我们在编程过程中,宏定义都有哪些作用呢? 常量定义 可以作为功能代码的开关 防止头文件被重复包含 定义一些通用类型,防止因为…

比赛记录:Codeforces Round 936 (Div. 2) A~E

传送门:CF [前题提要]:赛时一小时过了A~D,E感觉也不是很难(甚至感觉思维难度是小于D的),感觉这回是自己不够自信了,要是自信一点深入想一下应该也能做出来,咱就是说,如果E和D换一下,结果也是一样的,虽上大分,但是心里很不服,故记录一下 A - Median of an Array 当时网卡加载了…

手机网页视频批量提取工具可导出视频分享链接|爬虫采集下载软件

解放你的抖音视频管理——全新抖音批量下载工具震撼上线! 在这个信息爆炸的时代,如何高效地获取、管理和分享视频内容成为了许多用户的迫切需求。为了解决这一难题,我们研发了全新的视频批量下载工具,让你轻松畅享海量音视频资源。…

SQL中条件放在on后与where后的区别

数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 在使用left jion时,on和where条件的区别如下: on条件是在生成临时表时使用的条件,不管on中的条件是否为真&…

2024年 前端JavaScript Web APIs 第四天 笔记

4.1-日期对象的使用 4.2-时间戳的使用 4.3-倒计时案例的制作 4.4-查找DOM节点 4.5-增加节点以及学成在线案例 4.6-克隆节点和删除节点 4.7-M端事件 4.8-swiper插件的使用 4.9-今日综合案例-学生信息表 B站 <!DOCTYPE html> <html lang"en"><head>&…

ubuntu下samba匿名读写服务器

目的&#xff1a; 局域网内&#xff0c;ubuntu下&#xff0c;创建SAMBA文件共享服务器。匿名读写权限。为了开发项目组文件共享传输方便。 环境&#xff1a; X86_64电脑一台。 操作系统&#xff1a; Ubuntu 20.04 LTS 64位。 安装samba $ sudo apt-get install samba创建…

浅谈智能微型断路器在学校改造项目中的应用-安科瑞 蒋静

南浜路初中是昆山市重点建设的教育民生项目。当地政府对于这所学校非常重视&#xff0c;当然也有着很高的期望。南浜路初中的到来能够进一步促进昆山市义务教育阶段的发展&#xff0c;提升义务教育水平。 现场图片 智能网关 可连接至多16台智能微型断路器&#xff1b;可查看各…

UNI-APP读取本地JSON数据

首先要把json文件放在static文件夹下 然后在要读取数据的页面导入 import data from ../../static/data.json读取数据&#xff1a; onLoad() {console.log(data, data)}, 打印出来的就是JSON文件里的数据了

时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测

时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时…

为什么光模块会发生故障?

当SFP光模块发生故障时&#xff0c;技术人员需要立即找出原因并进行修复&#xff0c;否则&#xff0c;1G链路可能会中断。本指南将为初次接触光模块领域的企业提供一些SFP光模块修复解决方案的支持。 SFP光模块故障的主要原因 SFP光模块故障通常发生在发送端和接收端。最常见…

C++夯实基础

C在线学习笔记 第一阶段&#xff1a;基础 一、环境配置 1.1.第一个程序&#xff08;基本格式&#xff09; ​ #include <iosteam> using namespace std;int main(){cout<<"hello world"<<endl;system("pause"); }​ 模板 #include…

eth 交易案例分析9

交易hash: 先用0.26eth买入了多个GPT&#xff0c;然后用这多个GPT 在uniswap3 兑换了1.69 个eth&#xff0c; 疑问点&#xff1a;买入的 DLP 什么意思&#xff1f;