PointNet++论文复现(一)【PontNet网络模型代码详解 - 分类部分】

PontNet网络模型代码详解 - 分类部分

专栏持续更新中!关注博主查看后续部分!

分类模型的训练:

## e.g., pointnet2_ssg without normal features

python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg

python test_classification.py --log_dir pointnet2_cls_ssg

训练和测试

知识补充

PyTorch中,nn.Conv1d和nn.Conv2d是卷积神经网络(CNN)的基本构建模块。用于处理一维和二维数据。

nn.Conv1d的参数:in_channels (int):输入信号的通道数。out_channels (int):卷积产生的通道数(即卷积核的数量)。kernel_size (int or tuple):卷积核的大小。stride (int or tuple, optional):卷积步长。padding (int or tuple, optional):输入数据两侧的填充数。dilation (int or tuple, optional):卷积核元素之间的间距。groups (int, optional):连接输入和输出通道的分组数。bias (bool, optional):是否添加偏置项。

一维卷积示例:

import torchimport torch.nn as nnbatchSize=2num_features=3 # X,Y,Znum_point=4input=torch.ones(batchSize,num_features,num_point)x1=torch.Tensor([1,2,3,1]).reshape(1,4)input=torch.mul(x1,input)conv1=nn.Conv1d(3,5,1)y=conv1(input)

权重共享是卷积神经网络(CNN)的一个关键特性,尤其在处理图像、音频和文本等数据时非常重要。在一维卷积(Conv1D)的上下文中,权重共享具体意味着卷积层中的每个卷积核(或滤波器)在整个输入序列上滑动时使用相同的权重。

权重共享的含义

1、减少参数数量:在传统的全连接网络中,每个输入单元与每个输出单元之间都有一个独立的权重,导致参数数量随输入和输出大小的增长而急剧增加。在卷积网络中,由于使用了权重共享,同一个卷积核在不同位置的计算重复使用相同的权重,大大减少了模型的参数数量。

2、提高效率:权重共享不仅减少了模型的存储需求,也提高了计算效率,因为它减少了需要学习的参数数量。这使得卷积网络能够更快地训练,并减少了过拟合的风险。

3、捕捉局部特征:卷积操作通过卷积核在输入序列上的滑动来捕捉局部特征。权重共享保证了模型在整个序列的不同位置以相同的方式响应相似的模式或特征(输出特征的某一通道数值由一组权重(核)来决定,即该通道的所有值都共享同一组权重),这对于处理图像、音频和序列数据非常有用,因为这些类型的数据通常包含重复出现的局部模式。

一维卷积层和全连接层的区别

权重共享的一维卷积(Conv1D)层和全连接(Fully Connected,FC)层在结构和功能上有显著的区别,这些区别影响了它们在处理数据时的效率和适用性。以下是这两种网络层之间的主要区别:

权重共享与参数数量

权重共享的Conv1D层:在一维卷积层中,同一个卷积核(一组权重)在整个输入序列上滑动以提取特征,这意味着相同的权重被用于输入的不同部分。这种权重共享显著减少了模型的参数数量,因为不需要为输入数据的每个不同位置学习一组独立的权重。

全连接层:在全连接层中,每个输入单元都与每个输出单元连接,并且每个连接都有一个独立的权重。这意味着FC层的参数数量随输入和输出单元的数量线性增长,对于大型数据集或高维数据,会导致参数数量非常庞大,增加了计算成本和过拟合的风险。

局部连接与全局连接

Conv1D层:卷积操作侧重于提取输入序列的局部特征。每个卷积核在输入上滑动,只关注输入的一个局部区域,这有助于捕捉如边缘、纹理等局部模式,这对于时间序列分析、音频处理和文本处理等任务非常有效。

全连接层:在全连接层中,每个输入都与输出的每个单元连接,这意味着全连接层在处理输入时考虑了所有的全局信息。这使得FC层能够学习输入单元之间的复杂和非局部的关系,但也使其对于高维数据效率低下。

参数共享与空间不变性

Conv1D层的参数共享:通过在整个输入序列上重复使用相同的权重,卷积层能够对输入数据的平移表现出某种程度的不变

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/765069.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C#】C#窗体应用修改窗体的标题和图标

修改窗体顶部的标题和图表,如果不修改则会使用默认的图标,标题默认为Form1,如第一张图,这时候如果想换成和系统有关的内容,如第二张图,可以使用下面的方法进行修改,修改后打开该软件任务栏显示的…

学习笔记Day14:Linux下软件安装

软件安装 Anaconda 所有语言的包(package)、依赖(dependency)和环境(environment)管理器&#xff0c;类似应用商店 Conda < Miniconda < Anaconda&#xff08;有交互界面&#xff09; Linux下Miniconda即可 安装Miniconda 搜索北外/清华miniconda镜像网站&#xff…

echarts图表动态监听dataZoom滑动,控制柱条的宽度以及数值的显示隐藏

当数值过多时&#xff0c;显示所有柱条看着会很凌乱且文字会挤在一起&#xff0c;于是就需要监听datazoom的滑动&#xff0c;拿到对应的阈值后做出相应的配置。 “dataZoom” 事件通常用于响应用户对图表进行数据缩放的操作。 这里是datazoom官网api地址&#xff1a;点击跳转至…

服务器端(Debian 12)配置jupyter与R 语言的融合

融合前&#xff1a; 服务器端Debian 12,域名&#xff1a;www.leyuxy.online 1.安装r-base #apt install r-base 2.进入R并安装IRkernel #R >install.packages(“IRkernel”) 3.通过jupyter notebook的Terminal执行&#xff1a; R >IRkernel::installspec() 报错 解决…

DFS基础——迷宫

迷宫 配套视频讲解 关于dfs和bfs的区别讲解。 对于上图&#xff0c;假设我们要找从1到5的最短路&#xff0c;那么我们用dfs去找&#xff0c;并且按照编号从大到小的顺序去找&#xff0c;首先找到的路径如下&#xff0c; 从节点1出发&#xff0c;我们发现节点2可以走&#xff…

在Linux上运行JMeter(非界面)

参考&#xff1a; 查看文件类型&#xff1a;https://www.linuxprobe.com/files-tehre-fangfa.html 华为云平台 配置&#xff1a;jdk环境、jmeter环境 jmeter配置&#xff08;在/etc/profile文件中&#xff09;&#xff1a; export JMETER_HOME/path/to/jmeter/installati…

嵌入式学习41-数据结构2

今天学习了链表的增删改查 &#xff08;暂定&#xff01;&#xff01;后续再补内容&#xff09; 高内聚 &#xff1a;一个函数只实现一个功能 …

Docker 镜像仓库

目录 1、搭建私有 registry 服务端创建镜像仓库 客户端推送镜像 镜像导入导出 2、Nginx 代理 registry 仓库 SSL 证书 & https 协议 SSL证书 https协议 SSL 的验证流程 客户端安装 Nginx 使用 openssl 生成CA根证书和根证书key 创建 Nginx 服务证书 配置启动 N…

Airgorah:一款功能强大的WiFi安全审计工具

关于Airgorah Airgorah是一款功能强大的WiFi安全审计工具&#xff0c;该工具可以轻松发现和识别连接到无线接入点的客户端&#xff0c;并对特定的客户端执行身份验证攻击测试&#xff0c;捕捉WPA握手包&#xff0c;并尝试破解接入点的密码。在该工具的帮助下&#xff0c;广大研…

在Ubuntu上使用Script命令捕获命令与其输出

在Ubuntu上使用Script命令捕获命令与其输出 起初&#xff0c;是为了记录软件的安装过程&#xff0c;就在想有没有简单高效的记录方法&#xff0c;之后就找到了script命令。 使用 script命令&#xff0c;可以很容易地记录下你在终端里所有的操作与输出&#xff0c;非常适合用来…

是时候来唠一唠synchronized关键字了,Java多线程的必问考点!

写在开头 在之前的博文中&#xff0c;我们介绍了volatile关键字&#xff0c;Java中的锁以及锁的分类&#xff0c;今天我们花5分钟时间&#xff0c;一起学习一下另一个关键字&#xff1a;synchronized。 synchronized是什么&#xff1f; 首先synchronized是Java中的一个关键字…

Tensorflow 2.0 常见函数用法(一)

文章目录 0. 基础用法1. tf.cast2. tf.keras.layers.Dense3. tf.variable_scope4. tf.squeeze5. tf.math.multiply 0. 基础用法 Tensorflow 的用法不定期更新遇到的一些用法&#xff0c;之前已经包含了基础用法参考这里 &#xff0c;具体包含如下图的方法&#xff1a; 本文介…

dbscan算法实现鸢尾花聚类(python实现)

DBscan算法原理 : dbscan算法-CSDN博客 法一(调库) : 直接调库 : import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.cluster import DBSCAN from sklearn.decomposition import PCA from sklearn.discriminant_analysis …

leetcode 225.用队列实现栈 JAVA

题目 思路 1.一种是用双端队列&#xff08;Deque&#xff09;&#xff0c;直接就可以调用很多现成的方法&#xff0c;非常方便。 2.另一种是用普通的队列&#xff08;Queue&#xff09;,要实现栈的先入后出&#xff0c;可以将最后一个元素的前面所有元素出队&#xff0c;然后…

【Flask】Flask项目结构初识

1.前提准备 Python版本 # python 3.8.0 # 查看Python版本 python --version 安装第三方 Flask pip install flask # 如果安装失败&#xff0c;可以使用 -i&#xff0c;指定使用国内镜像源 # 清华镜像源&#xff1a;https://pypi.tuna.tsinghua.edu.cn/simple/ 检查 Flask 是…

SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述…

Qt如何直接处理系统事件(比如鼠标事件),而不是post事件

#include <QtGui/5.15.2/QtGui/qpa/qwindowsysteminterface.h> // 方便调试事件 QWindowSystemInterface::setSynchronousWindowSystemEvents(true); 直接再 qWindowsWndProc函数中处理 通常情况: 事件被放到一个队列中

基于springboot+vue+Mysql的垃圾分类网站

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

JavaScript高级(十)----JavaScript中的类【重述原型链】!

类 在JavaScript其实本来没有类的概念&#xff0c;哪怕是ES5以后的class&#xff0c;严格意义上来说也只是构造函数的语法糖&#xff0c;之所以喜欢称之为类&#xff0c;因为JavaScript也可以面向对象开发。 类的声明 class Person {}function Person1() {}// 上面两种写法本…

Milvus 向量数据库介绍及使用

一、Milvus 介绍及安装 Milvus 于 2019 年创建&#xff0c;其目标只有一个&#xff1a;存储、索引和管理由深度神经网络和其他机器学习 (ML) 模型生成的大量嵌入向量。它具备高可用、高性能、易拓展的特点&#xff0c;用于海量向量数据的实时召回。 作为专门为处理输入向量查…