【GPT概念04】仅解码器(only decode)模型的解码策略

一、说明

        在我之前的博客中,我们研究了关于生成式预训练转换器的整个概述,以及一篇关于生成式预训练转换器(GPT)的博客——预训练、微调和不同的用例应用。现在让我们看看所有仅解码器模型的解码策略是什么。

     

二、解码策略

        在之前的博客中,我们将转换器视为一个函数,它接受输入并开始生成下一个标记或输出,同时进行自回归,即它在所有步骤中将自己的输出作为输入并生成输出。

        在训练过程中,我们也以类似的方式进行训练,因为我们展示了某些文本,我们知道下一个单词是什么,我们要求它预测下一个标记是什么,然后根据最大标记的概率反向传播损失。下一个代币预测的想法可以迭代完成,以生成我们想要的任意数量的代币,并且可能会生成完整的故事。

        例如,假设一个句子“你能不能拿一个从前开始的故事”,所以整个事情已经成为给模型的第一个“k”个标记,从这个时间步长开始,我们需要生成一个故事,其中标记的预测发生,直到我们满意或一旦我们到达序列的末尾<eos>。

        鉴于模型已经过训练来预测下一个标记和一些额外的东西,我们将做一些称为“指令微调”的事情,现在我们希望模型在我给它某些输入的场景中工作,它必须从那里开始继续答案,所以给出的任何问题,或者如果给出一些段落并要求总结,那么它必须总结。

        最初的微调问题,如预测情绪或像两个句子一样,是相似还是不相似——与我们使用现代 LLM 应用程序看到的相比,这些要容易得多,这些应用程序是更具创造性的应用程序,如(写诗等、写简历、建立网站等),所以这些是目前让我们感到惊讶的事情。显然,目前我们不知道这些高级 LLM(大型语言模型)如何能够产生如此精确和创造性的输出,但我们目前看到的是关于下一个单词预测如何发生的解码部分——我们知道的一件事是,如果我们要选择最大概率标记的过程,那么显然我们将获得与此相同的标记输出确定性输出。现在让我们看一些或一些解码策略,其中我们为每个策略都有一些创造性的输出,其中确定性将提供相同的输出,随机性将产生不同的输出。

详尽搜索:

        假设我们想生成一个 5 个单词的序列,词汇表为 { cold, coffee, I , like , water, <stop>}

        穷举搜索所有可能的序列和相关的概率,并输出具有最高概率的序列。

  • 我喜欢冷水
  • 我喜欢冷咖啡
  • 像冷咖啡一样的咖啡
  • 我喜欢我喜欢
  • 咖啡 咖啡 咖啡 咖啡

        因此,对于每个句子输出,概率将是

P(x1, x2, x3,.....xn) = P(x1).P(x2/x1), ..........., P(xn/x1, x2, ......xn-1)

        由于这是详尽的搜索 - 我们将通过解码过程找到所有可能的序列。在每个时间步长中,我们将传递所有单词

        由于这里有 6 个单词,我们可以有这 6 个单词的分布,如下所示。

        如果其中一个示例输入序列是“我喜欢冷咖啡<停止>”

        上述序列的总概率将等于

P(I) * P(like/I)*P(冷/I,like)*P(咖啡/I,like,冷)

        同样,序列的其他组合也将遵循与上述相同的模式,并给我们提供具有最大概率的输出——这种概率计算是在每个时间步对所有标记完成的。

        因此,基于上述详尽的搜索,让我们假设这些是搜索空间中的概率

        假设该序列在所有 |v|⁵ 序列中具有最高的概率——在上面的本例中,如果生成“我喜欢冷咖啡”序列作为最高概率,则结果将突出显示

        通过这种详尽的搜索,无论我们计算多少次——对于给定的相同输入,我们都会得到相同的答案,我们看不到任何创造性的输出。这属于确定性策略。包含所有树类型输出的最终示例图如下所示 —

        在这 9 种可能性中,以最大概率为准,它在时间步长 =2 时给出输出。如果我们的时间步长 = 3,那么我们将有 27 个具有概率的序列,并且我们对所有这 27 个序列都获得最高分。

        如果 |v|= 40000,那么我们需要并行运行解码器 40000 次。

        贪婪的搜索:

        使用贪婪搜索 - 在每个时间步,我们总是以最高的概率输出令牌(贪婪)

p(w2 = like|w1=I) = 0.35

p(w3= 冷 | w1,w2) = 0.45

p(w4 = 咖啡 |w1,w2,w3) = 0.35

p(w5 = 止损 | w1, w2, s3, s4) = 0.5

则生成序列的概率为

p(w5,w1,w2,w3,w4) = 0.5*0.35*0.45*0.35*0.5 = 0.011

三、一些局限!

Is this the most likely sequence?

如果我们想得到各种相同长度的序列怎么办?

如果起始标记是单词“I”,那么它最终总是会产生相同的序列:我喜欢冷咖啡。

如果我们在第一个时间步中选择了第二个最可能的代币怎么办?

然后,后续时间步长中的条件分布将发生变化。则生成序列的概率为

p(w5,w1,w2,w3,w4) = 0.25*0.55*0.65*0.8*0.5 = 0.035

如果我们在第一个时间步中选择了第二个最可能的代币怎么办?

然后,后续时间步长中的条件分布将发生变化。那么生成的序列的概率为

p(w5,w1,w2,w3,w4) = 0.25*0.55*0.65*0.8*0.5 = 0.035

        我们可以输出这个序列,而不是贪婪搜索生成的序列。当我们发送相同的输入令牌时,这也将产生相同的输出。贪婪地选择具有最大概率的令牌,每个时间步长并不总是给出具有最大概率的序列。

光束搜索:

        不要考虑每个时间步长的所有标记的概率(如在穷举搜索中),而只考虑 top-k 标记

        假设 (k=2),在时间步长 = 2 时,我们有两个概率为 I , cold 的标记,我们将有 12 个这样的序列。

        现在我们必须选择使序列概率最大化的标记。它需要 k x |v|每个时间步的计算。在第二个时间步长,我们有 2 x 6=12 次计算,然后进行排名,我们选择最高概率序列。

        让我们从上述概率分数中选出前 2 名。

        按照类似的计算,我们最终选择时间步长 = 3 和 3 个单词或标记

        现在,我们将在时间步长 T 的末尾有 k 个序列,并输出概率最高的序列。

        参数 k 称为光束尺寸。它是穷举搜索的近似值。如果 k = 1,则它等于贪婪搜索。如果 k > 1,则我们正在进行波束搜索,如果 k = V,则我们正在进行穷举搜索。

        现在让我们举一个例子,k = 2,标记词汇是 |v|。

        以上 2 * |V|我们将再次取前 2 个概率的值

        我们将有更多这样的序列,我们将只有 2 个序列继续前进——所以最后我们的流程图看起来像这样

  • 贪婪搜索和光束搜索都容易退化,即它们可能是重复的,没有任何创造力。
  • 贪婪搜索的延迟低于波束搜索
  • 贪婪的搜索和光束搜索都无法产生创造性的输出
  • 但请注意,波束搜索策略非常适合翻译和摘要等任务。

        基本上,我们需要一些带有创造性答案或输出的惊喜——因此我们需要一些基于采样的策略,而不需要贪婪或光束搜索。

四、抽样策略 — Top -K

        在这里,在每个时间步长中,考虑概率分布中的 top — k 个标记。

        从 top-k 令牌中对令牌进行采样。假设 k = 2

        在对代币进行采样之前,top-k 代币的概率将相对归一化为 , P(I) = 0.61 ~ (0.25/ (0.25+0.4)), P(Coffee) = 0.39 ~ 0.4/(0.25+0.4)。

        让我们假设并创建一个随机数生成器,它预测介于 0 和 1 之间 — rand(0,1)。假设如果获得的数字是 ~0.7,那么咖啡将是作为输入的单词或标记,如果再次生成的随机数是 ~0.2,那么在时间步长 2 中,单词或标记“I”将是输入。

        对前 2 个单词使用 top-K 采样生成的序列是

        就像<停下来一样>

        等价和<止损>的归一化概率分别为 0.15/(0.55+0.15)~0.23 和 0.55/(0.55+0.15) ~0.77。

        现在我们运行 Rand 函数来生成从 0 到 1 的数字——假设如果值为 0.9,则输出<stop> 将是输出,那么结果过程将就此停止。下次当随机生成器输出为 0.5 时,我们将以“喜欢”作为结果。因此,通过进行这种随机生成,我们将获得不同的输出。可能是第一个“我”,生成“<停止>”——对于所有其他情况,结果可能会有所不同,如下所示。

惊喜是随机的结果。波束搜索与人类预测在每个时间步长上的预测相比如何?

        如果我们看一下波束搜索,它会以非常高的概率产生输出,因此我们看不到任何惊喜——但是如果要求人类填写句子,我们将得到不同和随机的结果,概率非常小,因为人类预测具有高方差,而波束搜索预测具有低方差。给其他极有可能的代币一个机会会导致生成的序列出现多样性。

        假设我们有 40K 词汇表中的前 5 个单词(I、go、where、now、then),概率分别为 (0.3、0.2、0.1、0.1、0.3)。

        如果随机生成器生成任意数字 b/w 0 和 1,并且基于该值,我们将选择或采样单词或标记以选择高概率值。我们必须记住,在这里我们不是从 40K 词汇表中随机选择样本,而是我们正在做的是,我们已经从 40K 词汇表中获得了前 5 个单词,并且从前 5 个单词或样本的子集中,我们正在创建序列——这里它是随机的,但它是序列的受控随机选择。

五、抽样策略 — Top -P

        k 的最优值应该是多少?

        让我们举 2 个例子,分别是平坦分布和峰值分布。

示例-1:(平坦分布)

示例 — 2:(峰值分布)

        根据分布类型,K 的值会有所不同——如果我们有一个峰值分布,那么与平坦分布相比,K值高一点将无济于事。

        如果我们修复 的 vlaue,比如 k = 5,那么我们就会从平坦分布中遗漏其他同样可能的标记。

        它会错过生成各种句子(创意较少)

        对于峰值分布,使用相同的值 k = 5,我们最终可能会为更少的句子创造一些意义。

解决方案 — 1 : 低温采样

        当温度 = 1 时,这就是正态 softmax 方程的分布。给定 logits,u1: |v|和温度参数 T ,计算概率为

        如果我们减小 T 值,我们会得到峰值分布。

  • 低温 = 偏态分布 = 创造力降低
  • 高温 = 更平坦的分布 = 更多的创造力

解决方案 — 2: 顶部 — P(原子核)采样

让我们再考虑上面的两个例子。

  • 按降序对概率进行排序
  • 设置参数 p, 0 < p < 1 的值
  • 将代币从顶部代币开始的概率相加
  • 如果总和超过 p,则从所选令牌中抽取令牌
  • 它类似于 top-k,k 是动态的。假设我们将 p = 0.6 设置为阈值,

例如,-1 分布:该模型将从标记中采样(思想、知道、有、看到、说)

例如-2 分布:模型将从令牌中采样(热、冷却)

        根据生成的随机值,我们将选择不同的单词标记进行序列形成。

        这是对仅解码器模型的所有解码策略的总结,即我们在确定性和随机性上徘徊的 GPT——这种随机策略确保即使 transformer 具有确定性的计算输出,但最后我们将添加一个采样函数,这将确保我们每次都采样不同的令牌,从而生成不同的序列。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/762020.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】多线程编程基础

&#x1f4bb;文章目录 &#x1f4c4;前言&#x1f33a;linux线程基础线程的概念线程的优缺点线程与进程的区别 线程的创建 &#x1f33b;linux线程冲突概念互斥锁函数介绍加锁的缺点 &#x1f4d3;总结 &#x1f4c4;前言 无论你是否为程序员&#xff0c;相信多线程这个词汇应…

量子计算机

近日&#xff0c;在AWS re&#xff1a;Invent全球大会上&#xff0c;亚马逊官宣AWS三箭齐发量子计算组合拳&#xff1a;Braket、AWS量子计算中心和量子解决方案实验室。 随着亚马逊的强势入局&#xff0c;加上此前鼓吹量子霸权的谷歌、起步最早的IBM、暗自发力的微软&#xff…

react-jsx

react04 jsx语法 - 01 基础知识&#xff1a; jsx javascript xml(html) 把js和heml标签混合到一起 react视图编写及构建的简要流程 &#xff1a; 如何在react中使vs code支持格式化和快捷键提示&#xff1a;1, 2,修改文件后缀为jsx&#xff0c;因为webpack的打包规则中可以…

如何通过idea搭建一个SpringBoot的Web项目(最基础版)

通过idea搭建一个SpringBoot的Web项目 文章目录 通过idea搭建一个SpringBoot的Web项目一、打开idea&#xff0c;找到 create new project二、创建方式三、配置项目依赖四、新建项目模块五、总结 一、打开idea&#xff0c;找到 create new project 方式1 方式2 二、创建方式 新…

马斯克开源Grok-1

Grok-1是由马斯克AI创企xAI发布的第一代大语言模型&#xff0c;它以其巨大的参数量——高达3140亿&#xff0c;引起了全球范围内的广泛关注。这一参数量远超其他知名模型&#xff0c;如OpenAI的GPT-3.5&#xff0c;后者仅有1750亿参数。在2024年3月17日&#xff0c;马斯克宣布将…

【jvm】jinfo使用

jinfo介绍 jinfo 是一个命令行工具&#xff0c;用于查看和修改 Java 虚拟机&#xff08;JVM&#xff09;的配置参数。它通常用于调试和性能调优。 使用 jinfo 命令&#xff0c;你可以查看当前 JVM 的配置参数&#xff0c;包括堆大小、线程数、垃圾回收器类型等。此外&#xf…

天翼云防火墙配置端口转换案例

环境: 天翼云 云墙 问题描述: 天翼云防火墙配置端口转换案例 云主机192.168.10.9:2231 解决方案: 1.先登入云墙 可以从控制中心登入不用再输入密码 2.新建对象和端口 192.168.10.9:2231 3.到弹性IP这选个公网IP 记住弹性IP和后面虚拟IP 4.新建 目的NAT,按原有复制…

【Arxml专题】-29-使用Cantools将CAN Matrix Arxml自动生成C语言代码

目录 1 安装Python和Cantools 1.1 查看Python已安装的Package包 1.2 在Python中安装Cantools插件包 1.3 获取更多Cantools工具的更新动态 2 CAN Matrix Arxml自动生成C语言代码 2.1 批处理文件CAN_Matrix_Arxml_To_C.bat内容说明 2.2 CAN Matrix Arxml文件要求 2.3 如何…

20232831 2023-2024-2 《网络攻防实践》第3次作业

目录 20232831 2023-2024-2 《网络攻防实践》第3次作业1.实验内容2.实验过程&#xff08;1&#xff09;动手实践tcpdump&#xff08;2&#xff09;动手实践Wireshark&#xff08;3&#xff09;取证分析实践&#xff0c;解码网络扫描器&#xff08;listen.cap&#xff09; 3.学习…

react拖拽react-beautiful-dnd,一维数组,二维数组

写在前边&#xff0c;二维数组可以拖拽&#xff0c;但是不可以编辑拖拽&#xff0c;如果想要实现编辑拖拽&#xff0c;还是需要转换成一维数组。原因是因为插件的官方规定&#xff0c;在拖拽过程中不可以编辑Droppable层的Props。 相关地址&#xff1a; 中文文档地址 react-be…

VUE中添加视频播放功能

转载https://www.cnblogs.com/gg-qq/p/10782848.html 常见错误 vue-video-player下载后‘vue-video-player/src/custom-theme.css‘找不到 解决方法 卸载原来的video-play版本 降低原来的版本 方法一 npm install vue-video-player5.0.1 --save 方法二 或者是在pack.json中直…

OpenGL学习笔记【4】——创建窗口

一、前三章节的前情回顾 章节一&#xff1a;上下文(Context) OpenGL学习笔记【1】——简介-CSDN博客 章节一讲述了OpenGL在渲染的时候需要一个Context来记录了OpenGL渲染需要的所有信息和状态&#xff0c;可以把上下文理解成一个大的结构体&#xff0c;它里面记录了当前绘制使…

JVM垃圾回收之内存分配,死亡对象判断方法

Java 堆是垃圾收集器管理的主要区域&#xff0c;因此也被称作 GC 堆。 堆划分为新生代 老生代 永久代。 下图所示的 Eden 区、两个 Survivor 区 S0 和 S1 都属于新生代&#xff0c;中间一层属于老年代&#xff0c;最下面一层属于永久代。 内存分配原则 对象优先在Eden区域分…

基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出虚拟现实动画

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1四旋翼无人机的动力学模型 4.2 PID控制器设计 4.3 姿态控制实现 4.4 VR虚拟现实动画展示 5.完整工程文件 1.课题概述 基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出vr虚拟现实…

Chronicles 是什么数据库

可以理解的是 Chronicles 是 EPIC 公司根据 IRIS 进行魔改后的一个 DBMS。 简单的来说 Chronicles 就是一个数据库管理系统&#xff0c;但这个数据库管理系统不是我们常说的关系数据库的管理系统。 数据库结构 只要对数据库有所了解的都知道数据库通常就是 2 个部分&#xf…

10W字解析 SpringBoot技术内幕文档,实战+原理齐飞,spring事务实现原理面试

第3章&#xff0c;Spring Boot构造流程源码分析&#xff0c;Spring Boot的启动非常简单&#xff0c;只需执行一个简单的main方法即可&#xff0c;但在整个main方法中&#xff0c;Spring Boot都做了些什么呢&#xff1f;本章会为大家详细讲解Spring Boot启动过程中所涉及的源代码…

会声会影2023新版本特点以及会声会影2023序列号注册机keygen下载

会声会影简介 虽然现在已经是2024年了&#xff0c;但是大家对会声会影2024的热爱一直不减&#xff0c;很多人后台问我&#xff0c;有没有会声会影2023序列号和注册机&#xff0c;这不&#xff0c;今天这篇文章它来了。 会声会影2023新版特性 1.全新的进入/中场/退出标题动态功…

【Godot 4.2】常见几何图形、网格、刻度线点求取函数及原理总结

概述 本篇为ShapePoints静态函数库的补充和辅助文档。ShapePoints函数库是一个用于生成常见几何图形顶点数据&#xff08;PackedVector2Array&#xff09;的静态函数库。生成的数据可用于_draw和Line2D、Polygon2D等进行绘制和显示。因为不断地持续扩展&#xff0c;ShapePoint…

基于Springboot的在线投稿系统+数据库+免费远程调试

项目介绍: Javaee项目&#xff0c;springboot项目。采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring SpringBoot Mybatis VueMavenLayui来实现。MySQL数据库作为系统数据储存平台&a…

计算机组成原理 双端口存储器原理实验

一、实验目的 1、了解双端口静态随机存储器IDT7132的工作特性及使用方法 2、了解半导体存储器怎样存储和读出数据 3、了解双端口存储器怎样并行读写&#xff0c;产生冲突的情况如何 二、实验任务 (1)按图7所示&#xff0c;将有关控制信号和和二进制开关对应接好&#xff0c;…