在图像质量评估上,有三个重要指标:PSNR,SSIM,LPIPS。本文提供简易脚本分别实现。
PSNR,峰值信噪比,是基于MSE的像素比较低质量评估,一般30dB以上质量就不错,到40dB以上肉眼就很难分别了。
SSIM,结构相似性,从分布上来比较相似性,量化到(0-1)之间,越接近1则证明图像质量越好。具体数学公式可以看我之前的博客《SSIM》。
LPIPS,利用AI模型来量化图像之间的相似性。取值范围也是[0,1],与SSIM相反,LPIPS是越小则证明图像质量越好。
像这种常见的图像质量评价指标,都会收录到torchmetrics里面。只需安装:
pip install torchmetrics
实验脚本:
import torch
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
from torchmetrics.image import StructuralSimilarityIndexMeasure
from torchmetrics.image import PeakSignalNoiseRatio_ = torch.manual_seed(123)def psnr_torch(img1, img2):mse = ((img1 - img2) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True)return 20 * torch.log10(1.0 / torch.sqrt(mse))def psnr(img1, img2):metric = PeakSignalNoiseRatio()return metric(img1, img2)def ssim(img1, img2):metric = StructuralSimilarityIndexMeasure(data_range=1.0)return metric(img1, img2)def lpips(img1, img2):metric = LearnedPerceptualImagePatchSimilarity(net_type='vgg')return metric(img1, img2)def _main():img1 = torch.rand(1, 3, 100, 100)img2 = torch.rand(1, 3, 100, 100)# PSNRprint("PNSR: ", psnr_torch(img1, img2))print("PNSR1: ", psnr(img1, img2))print("SSIM: ", ssim(img1, img2))print("LPIPS: ", lpips(img1, img2))if __name__ == "__main__":_main()
代码里给了两种PSNR实现方法,计算结果差别不大。欢迎自取~