Bi-directional Long Short-Term Memory,双向LSTM网络。
有些时候预测可能需要由前面若干输入和后面若干输入共同决定,这样会更加准确。因此提出了双向循环神经网络,网络结构如上图。
构建LSTM模型时,在参数中添加bidirectional=True,这样就构建了一个双向的LSTM模型。初始化参数时,全连接层的隐藏层特征数量x2,h0和c0参数也要相应改变。
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transformsdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.003# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='./data/',train=True, transform=transforms.ToTensor(),download=True)test_dataset = torchvision.datasets.MNIST(root='./data/',train=False, transform=transforms.ToTensor())# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size, shuffle=False)
class BiRNN(nn.Module):def __init__(self, input_size, hidden_size, num_layers, num_classes):super(BiRNN, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)self.fc = nn.Linear(hidden_size*2, num_classes) # 2 for bidirectiondef forward(self, x):# Set initial statesh0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # 2 for bidirection c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device)# Forward propagate LSTMout, _ = self.lstm(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size*2)# Decode the hidden state of the last time stepout = self.fc(out[:, -1, :])return out
model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device)criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)total_step = len(train_loader)
for epoch in range(num_epochs):for i, (images, labels) in enumerate(train_loader):images = images.reshape(-1, sequence_length, input_size).to(device)labels = labels.to(device)# Forward passoutputs = model(images)loss = criterion(outputs, labels)# Backward and optimizeoptimizer.zero_grad()loss.backward()optimizer.step()if (i+1) % 100 == 0:print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item()))