【DL经典回顾】激活函数大汇总(四十二)(CosReLU附代码和详细公式)

激活函数大汇总(四十二)(CosReLU附代码和详细公式)

更多激活函数见激活函数大汇总列表

一、引言

欢迎来到我们深入探索神经网络核心组成部分——激活函数的系列博客。在人工智能的世界里,激活函数扮演着不可或缺的角色,它们决定着神经元的输出,并且影响着网络的学习能力与表现力。鉴于激活函数的重要性和多样性,我们将通过几篇文章的形式,本篇详细介绍两种激活函数,旨在帮助读者深入了解各种激活函数的特点、应用场景及其对模型性能的影响。

在接下来的文章中,我们将逐一探讨各种激活函数,从经典到最新的研究成果。

限于笔者水平,对于本博客存在的纰漏和错误,欢迎大家留言指正,我将不断更新。
在这里插入图片描述

二、CosReLU

CosReLU激活函数结合了ReLU(Rectified Linear Unit)和余弦函数的特性。这种激活函数尝试利用ReLU的线性正向激活特性,并通过加入余弦函数来引入额外的非线性和周期性。

1. 数学定义

CosReLU激活函数定义为:

f ( x ) = max ⁡ ( 0 , x ) + cos ⁡ ( x ) f(x)=\max (0, x)+\cos (x) f(x)=max(0,x)+

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/761316.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

请解释 VB.NET 中的事件(Event)

请解释 VB.NET 中的事件(Event) 在VB.NET中,事件(Event)是一种机制,用于在类之间实现松耦合的通信。事件允许一个对象(称为事件源)通知其他对象(称为事件处理程序&#…

【热门话题】深入浅出:npm常用命令详解与实践

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 标题:深入浅出:npm常用命令详解与实践引言一、npm基本概…

Kubernetes的Namespace使用

在 Kubernetes 中,命名空间提供了一种用于隔离单个集群中的资源组的机制。资源名称在命名空间内必须是唯一的,但不能跨命名空间。基于命名空间的作用域仅适用于命名空间物体 (例如部署、服务等)而不是集群范围的对象(例…

《由浅入深学习SAP财务》:第2章 总账模块 - 2.4 会计凭证处理

2.4.1 会计凭证处理的基本概念 会计凭证是企业经济业务在会计上的反映,它是用会计语言表达的一种单据。 典型生产企业的财务凭证创建方式: 企业在实施SAP的过程中,大部分凭证都是自动生成的。要保证这些凭证能准确地生成,必须要满…

全流程解析:R语言在Meta分析中的核心技术应用

R语言作为一种强大的统计分析和绘图语言,在科研领域发挥着日益重要的作用。其中,Meta分析作为一种整合多个独立研究结果的统计方法,在R语言中得到了广泛的应用。通过R语言进行Meta分析,研究者能够更为准确、全面地评估某一研究问题…

Linux系统之jq工具的基本使用

Linux系统之jq工具的基本使用 一、jq工具介绍1. jq工具简介2. jq工具的特点 二、jq工具的安装1. yum安装jq2. 二进制安装jq 三、jq命令的使用帮助1. 查询jq命令帮助信息2. jq命令的选项解释 四、jq命令的基本使用1. 显示json文件的所有的key2. 显示key对应的值3. 查询json文件4…

掌握Python数据分析:从入门到精通【文末送书-43】

文章目录 掌握Python数据分析:从入门到精通入门篇进阶篇精通篇 Python数据分析从入门到精通(第2版)(软件开发视频大讲堂)【文末送书-43】 掌握Python数据分析:从入门到精通 Python已成为数据科学领域最受欢…

网工内推 | 云计算工程师,HCIE认证优先,最高18k*14薪

01 杭州中港科技有限公司 招聘岗位:云计算工程师 职责描述: 1、承担云计算相关工程交付、业务上云及售前测试,从事虚拟化、桌面云、存储、服务器、数据中心、大数据、相关产品的工程项目交付或协助项目交付。 2、承担云计算维护工程师职责&…

C# 实时监听文件夹以及文件夹内部的变化

主要是使用系统自带的System.IO.FileSystemWatcher这个类&#xff0c;废话不多说&#xff0c;直接上代码&#xff1a; /// <summary>/// 文件监听/// </summary>public class FileFolderMonitor{private FileSystemWatcher fileSystemWatcher;/// <summary>…

基于springboot创建mybatis

第一步&#xff1a;创建项目 第二步&#xff1a;添加依赖 第三步&#xff1a;连接MySQL 第四步&#xff1a;添加MySQL配置 #驱动类名称 spring.datasource.driver-class-namecom.mysql.cj.jdbc.Driver #数据库连接的url spring.datasource.urljdbc:mysql://localhost:3306/myb…

泰克Tektronix MDO4034C混合域示波器

181/2461/8938产品概述&#xff1a; MDO4034C混合域示波器&#xff1a;350 MHz模拟带宽&#xff0c;2.5 GS/s采样率&#xff0c;20 M 点记录长度&#xff0c;4模拟通道&#xff1b;MDO4000C混合域示波器是一款功能强大的高性能六合一示波器。MDO4000C混合域示波器是一款功能强…

【Python-Pandas】to_csv用法示例

to_csv用法示例 X_train.to_csv("F:\\PaperCode\\Mypaper_python_code\\data\\dataset_split\\X_train.tsv", indexFalse)index &#xff1a;表示是否保存索引&#xff0c;如果是True&#xff0c;则保存索引。默认是True

恭贺熊盛熊入围2024中国别墅门十大品牌

近日&#xff0c;2024年别墅门十大品牌终于在万众期待中正式落下帷幕。在这里恭喜熊盛熊顺利入围&#xff0c;成功跻身2024年中国别墅门十大品牌前十强&#xff01; 熊盛熊隶属于武义熊盛熊门业有限公司。熊盛熊门业是一家集设计、开发、生产、销售及服务于一体的高科技生产型企…

蓝桥刷题--四元组问题和肖恩的投球游戏加强版

1.四元组问题 我的这个代码有点问题&#xff0c;我也找不出来&#xff0c;哪位大佬指正一下 // 四元组问题 //思路 // 是否存在 a < b < c < d, 使得nums[d] < nums[c] < nums[a] < nums[b] //分别维护二元组 (a, b) 和 (c, d), 对合法 b 维护前缀 max 的 n…

冲刺跑转长跑过程中,新茶饮品牌如何觅增量?

如今&#xff0c;新茶饮行业的发展日趋成熟&#xff0c;并通过资本动作、市场扩张等释放出相关信号。 比如&#xff0c;在资本动作上&#xff0c;IPO已成为新茶饮品牌发展的重要议程。可以看到&#xff0c;截至2023年2月&#xff0c;正在推进港交所IPO的新茶饮企业就有茶百道、…

【力扣】力扣合集

统计 CSDN 力扣 持续更新 1. 两数之和2. 两数相加9. 回文数13. 罗马数字转整数14. 最长公共前缀21. 合并两个有序链表26. 删除有序数组中的重复项27. 移除元素28. 找出字符串中第一个匹配项的下标35. 搜索插入位置58. 最后一个单词的长度66. 加一67. 二进制求和69. x 的平方根…

公司系统中了.rmallox勒索病毒如何恢复数据?

早晨上班时刻&#xff1a; 当阳光逐渐洒满大地&#xff0c;城市的喧嚣开始涌动&#xff0c;某公司的员工们纷纷踏入办公大楼&#xff0c;准备开始新的一天的工作。他们像往常一样打开电脑&#xff0c;准备接收邮件、查看日程、浏览项目进展。 病毒悄然发作&#xff1a; 就在员…

数学建模常用的代码

Dijkstra算法找最短路径代码 算法的核心就是从原点出发&#xff08;原点可以是自己定义的任意一个点&#xff09;&#xff0c;以原点为圆心&#xff0c;半径从小到大&#xff0c;判断原点到半径上面的点的最短距离&#xff0c;这个距离可能是圆心r0->r1&#xff08;半径较小…

大屏动效合集更更更之实现百分比环形

实现效果 参考链接&#xff1a; https://pslkzs.com/demo/pie/demo1.php 写在最后&#x1f352; 源码&#xff0c;关注&#x1f365;苏苏的bug&#xff0c;&#x1f361;苏苏的github&#xff0c;&#x1f36a;苏苏的码云

Linux系统编程(笔记)

1、认识计算机系统&#xff08;上&#xff09; 1.1、计算机系统由软硬件构成 1.2、总线 1.3、I/O设备 1.4、内存 1.5、处理器 1.6、计算机硬件组成 2、认识计算机系统&#xff08;下&#xff09; 2.1、什么是操作系统 2.2、Linux内核模块 2.3、操作系统管理硬件&#xff08;职…