数据结构/C++:红黑树

数据结构/C++:红黑树

    • 概念
    • 实现
      • 基本结构
      • 插入
        • uncle为红色节点
        • uncle为黑色节点
    • 总代码展示


概念

红黑树是一种二叉搜索树,一般的二叉搜索会发生不平衡现象,导致搜索效率下降,于是学者们开始探索如何让二叉搜索树保持平衡,这种树叫做自平衡二叉搜索树。起初学者发明了AVL树,其通过一定算法保持了二叉搜索树的严格平衡,不久后Rudolf Bayer发明了红黑树,红黑树的平衡是较为宽泛的,为了保持平衡,红黑树付出的代价比AVL树更小。因此红黑树被更为广泛的使用,比如Java,C++,python中,使用的自平衡二叉搜索树都是红黑树,而不是AVL树。

如果想了解AVL树,可以看这篇博客:[数据结构/C++:AVL树]

红黑树的要求如下:

红黑树中,最长路径的长度不会超过最短路径的两倍

先解释一下路径的概念:从根走到nullptr
有不少人认为路径是从根走到叶子节点,这是不正确的。

红黑树用了五条规则来限制一棵树,从而达到以上要求:

  1. 每个节点不是红色就是黑色
  2. 根节点一定是黑色
  3. 不可以出现连续的红色节点(黑色可以连续出现)
  4. 每一条路径都包含相同数目的黑色节点
  5. nullptr视为黑色节点

只要满足以上五个条件,那么这棵树就是一颗红黑树,而且满足最长路径的长度不会超过最短路径的两倍。为什么呢?

五条规则中,我标红了3,4两条规则:

  1. 不可以出现连续的红色节点(黑色可以连续出现)
  2. 每一条路径都包含相同数目的黑色节点

由于每一条路径都必须包含相同数目的黑色节点,现在我们假设一棵红黑树,所有路径的黑色节点数目都是x,那么最短的路径长度就是全为黑色节点,长度为x
如果想让一条路径变长,那么就只能插入更多的红色节点(因为黑色节点数目相同),但是红色节点又不能连续出现,所以只能是黑红黑红黑红黑红黑红......这样排列,一个黑节点匹配一个红节点,因此最长路径的长度就是黑色节点的两倍2x
可以发现,红黑树通过这两条核心规则,保证了二叉搜索树的平衡。

比如以下就是一颗红黑树:
在这里插入图片描述

其最短路径为最左侧的路径,长度为2,即两个黑节点。
其最长路径为最右侧的路径,长度为4,即一红一黑排列。

要注意的是:不是所有的红黑树都会出现以上的全黑路径,或者一红一黑路径的,这只是极端情况

接下来我们通过实现红黑树,来了解红黑树是如何自平衡的:


实现

基本结构

首先我们要在节点中加入一个成员来表示节点的颜色,颜色有红黑和黑色两种状态,这里我使用枚举来区分两者:

enum Colour
{RED,BLACK
};

在某些红黑树的实现中,使用bool值来表示红黑颜色,这也是可以的,但是本博客以枚举来表示颜色。

节点类:

template<class K, class V>
struct RBTreeNode
{RBTreeNode* _left;RBTreeNode* _right;RBTreeNode* _parent;pair<K, V> _kv;Colour _col;
};

_left:左子树
_right:右子树
_parent:父节点
_kv:节点存储的值
_col:该节点的颜色

节点类还需要一个构造函数进行初始化,现在的问题就是:新的节点要初始化为什么颜色?
先来考虑一下:插入红色节点和插入黑色节点,谁对红黑树影响大?
对于一棵红黑树,其所有路径的黑色节点数目都相同,如果我们在某一条路径末尾插入了黑色节点,那么整棵树的所有其它路径都会少一个黑节点。而插入红色节点只影响当前路径,所以新节点应该是红色节点

构造函数:

RBTreeNode(const pair<K, V>& kv): _left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED)//初始化为红节点
{}

接着就是红黑树本体,类中只存储一个根节点_root

template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
private:Node* _root = nullptr;
}

现在我们有了红黑树的基本结构,接下来就实现它的插入操作:


插入

那么我们先写出当基本的二叉搜索树的插入代码逻辑,既然要插入,那么就要先找到合适的位置插入,代码如下:

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;//保持根为黑节点}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first > kv.first)parent->_left = cur;elseparent->_right = cur;cur->_parent = parent;//调整红黑树//......//......//......return true;
}

接下来,我先解析以上代码的逻辑:

if (_root == nullptr)
{_root = new Node(kv);_root->_col = BLACK;//保持根为黑节点
}

如果我们插入节点时,根节点_root为空,说明当前整棵树都为空,那么我们直接插入值作为根节点即可,但是根节点必须是黑色节点,而我们新插入的节点是红色,所以要将其调整为黑色节点。


while (cur)
{if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}
}

以上代码,是在找到合适的插入位置,当key大于当前节点cur->_kv.first < kv.first,那么cur就向左寻找,反之向右寻找。如果当前节点值等于key,那么说明该节点已经存在,返回false代表插入失败。当我们的cur为空指针,说明已经找到了插入的节点,此时跳出循环进行插入。


cur = new Node(kv);if (parent->_kv.first > kv.first)parent->_left = cur;
elseparent->_right = cur;cur->_parent = parent;

到达此处,说明前面已经找到插入的位置了,而parent节点就是插入位置的父亲节点。根据key的大小,来判断插入到左边还是右边,插入完成后,再让新节点的_parent指向parent

至此我们就完成了插入操作,接下来就要根据不同情况对红黑树进行调整。


对于红黑树的插入,我们需要关注新节点的父亲parent,祖父grandfather,叔叔uncle三个节点:
在这里插入图片描述

  1. 先根据父亲节点的颜色,来判断是否需要调整

父亲节点为黑色:
在这里插入图片描述
新插入的节点默认为红色,所以新插入节点不会影响路径上黑色节点的数目,而parent是黑节点,我们也没有出现连续的红色节点,所以这种情况无需任何调整,直接插入就可以。

父亲节点为红色:
在这里插入图片描述
如果父亲节点为红色,我们就会出现连续的红色节点,这时我们就需要进行调整了

以上两种情况总结为:

parent为黑色,直接插入
parent为红色,插入后需要进行调整

parent为红色,我们就需要再根据uncle的颜色,将插入分类两类:uncle为红色以及uncle为黑色
在这里插入图片描述
值得注意的是:由于parent是红色节点,此时的grandfather一定是黑色节点,因为不能出现连续红色节点
这两种情况的操作不同,我们先看到uncle为红色的情况:


uncle为红色节点

uncle节点为红色,此时需要进行变色

变色如下:
在这里插入图片描述

由于新插入了红色的cur节点,此时parentcur出现了连续的红色节点,于是我们将parent改为黑色。但是此时以parent为根的所有路径就会多出一个黑节点,于是把grandfather变为红色,来抵消这个新增的黑节点。但是此时以uncle为根的路径又会少一个黑节点,于是把uncle变黑。

但是我们grandfather变为了红色,这有可能会影响到上一层节点,比如这样:
在这里插入图片描述
我们把grandfather变红之后,又出现了两个红色节点相连的情况,所以我们要写一个while循环,来反复向上检查。

当前代码如下:

while (parent && parent->_col == RED)//只有parent为红,才更新 (parent可能不存在)
{Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle为黑节点 {//其它处理}}else{Node* uncle = grandfather->_left;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle为黑节点 {//其它处理}}
}_root->_col = BLACK;//在循环内部不判断root情况,统一处理

代码解析:

while (parent && parent->_col == RED)

该代码用于检测curparent的颜色,通过我们前面的推导,如果parent为红色才需要调整,因此进入循环的条件之一是parent为红色。另外的parent有可能为nullptr,此时我们要避免访问空指针,所以空指针也不能进循环


if (parent == grandfather->_left)
{  }
else
{ }

这一段代码是在检测parent 节点是grandfather的左子树还是右子树,这将涉及到我们如何找uncle以及下一种情况的调整,此时我们要分类讨论。当parent == grandfather->_left成立,那么uncle就是grandfather的右子树:Node* uncle = grandfather->_right;,反之就是左子树


if (uncle && uncle->_col == RED)
{parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;
}      

我们找到uncle后,如果uncle是红色,那么直接进行变色操作,把parentuncle的颜色变为黑色,grandfather变为红色。
随后由于我们的变色操作可能会影响上一层,此时调整节点,进入下一次while循环


在整个while循环外侧,还有一句代码:

_root->_col = BLACK;

这是因为我们在先前的while循环中,有可能出现对_root节点的操作,导致_root的颜色改变,而_root需要保持黑色。如果我们在循环内部,每一次都检测_root有点麻烦了,于是我们直接在每一次调整完节点后,把_root强行矫正为黑色

至此我们就讨论完了uncle为红色节点的情况,接下来我们就讨论uncle为黑色节点:


uncle为黑色节点

由于红黑树中,nullptr也算作黑色节点,所以uncle为黑色分为以下两种情况:

  1. uncle为空指针
  2. uncle不为空指针

图示如下:
在这里插入图片描述

如果 uncle为空指针,那么cur一定是新插入的节点

因为如果cur不是新插入的节点,那么curparent一定有一个原先是黑色节点,不然会出现连续的红色节点。但是如果curparent有一个是黑色节点,那么grandfather的左子树就比右子树多出一个黑节点,这就违背了红黑树规则。无论怎样,原先的树都不可能符合规则,所以cur一定是新插入的节点,破坏了规则

如果 uncle不为空指针,那么cur一定是从黑色节点变成的红色节点(不是新插入的)

因为如果uncle存在,那么grandfather的右子树就存在一个黑节点,而parent是红节点,所以curparent的右子树中都至少有一个黑节点,才能保证每一条路径黑节点数目相同。因此cur原先一定是黑节点,是因为cur下层插入了新节点,然后通过while循环向上走,影响到了当前层

对于这种uncle为黑色的情况,我们需要通过旋转+变色来维持红黑树。

旋转又分为单旋和双旋:

curparent的关系和parentgrandfather的关系一致时,需要进行单旋

比如我们刚刚的情况:
在这里插入图片描述
curparent的左子树,parentgrandfather的左子树,关系一致。
我们需要对其进行右单旋+变色:
在这里插入图片描述
这个旋转的算法在此我就不过多讲解了,可以去AVL树的博客中了解。我重点讲解一下变色和旋转的合理性:

一次插入过程中,走到这一步,说明前面一定经过了uncle为红色的情况,而uncle为红色的情况进行变色并不会对任何路径的黑色节点数目造成影响,因此目前还是符合黑色节点数目相同规则的
同为parent的子树,以curC为根的路径,黑节点数目相同
同为grandfather的子树,以parentuncle为根的路径黑节点数目相同
parent是红色节点,所以curC以及uncle为根的路径,黑节点数目都相同


进行单旋,会把c树交给grandfather做子树,而cuncle为根的路径黑节点数目相同,不违背规则(旋转的合理性)


旋转后,parent作新根,grandfathercur作为左右子树grandfather为根的路径,整体上就会比以cur为根的路径多出一个黑节点(即grandfather本身)
因此,将grandfather改为红节点,来平衡parent左右子树的黑节点
而红色节点不能连续出现,再把parent改为黑节点

curparent的关系和parentgrandfather的关系不一致时,需要进行双旋

在这里插入图片描述
以上结构中,curparent的左子树,parentgrandfather的右子树,关系不一致,要进行双旋。
同样的,讲解一下变色和旋转的合理性:

一次插入过程中,走到这一步,说明前面一定经过了uncle为红色的情况,而uncle为红色的情况进行变色并不会对任何路径的黑色节点数目造成影响,因此目前还是符合黑色节点数目相同规则的
同为parent的子树,以curA为根的路径,黑节点数目相同
同为cur的子树,以BC为根的路径,黑节点数目相同
由于cur是红节点,所以以ABC为根的路径,黑节点数目相同
相同的手段,由于parent是红节点,所以Auncle为根的路径的黑节点数目相同
因此ABCuncle为根的路径,黑节点数目都相同


进行双旋,会把C子树交给grandfather做子树,而Cuncle黑节点数目相同,不违背规则也会把B交给parent做子树
AB黑节点数目相同,不违背规则
旋转后,cur作新根,grandfatherparent作为左右子树grandfather为根的路径,整体上就会比以parent为根的路径多出一个黑节点(grandfather本身)
因此,将grandfather改为红节点,来平衡cur左右子树的黑节点而红色节点不能连续出现,再把cur改为黑节点

以上单旋和双旋的变色,看似复杂,其实最后都是把新根的颜色变为黑色,新根的左右子树变为红色。由于我们旋转后,新根都是黑节点,所以不会影响上层,可以直接跳出循环

代码如下:

parent == grandfather->_left

else//uncle为黑节点 (旋转)
{if (cur == parent->_left){RotateR(grandfather);//右单旋parent->_col = BLACK;//变色grandfather->_col = RED;//变色}else{RotateL(parent);//左右双旋 - 左单旋RotateR(grandfather);//左右双旋 - 右单旋cur->_col = BLACK;//变色grandfather->_col = RED;//变色}break;//旋转后一定平衡
}

parent == grandfather->_right

else//uncle为黑节点 (旋转)
{if (cur == parent->_right){RotateL(grandfather);//左单旋parent->_col = BLACK;//变色grandfather->_col = RED;//变色}else{RotateR(parent);//右左双旋 - 右单旋RotateL(grandfather);//右左双旋 - 左单旋cur->_col = BLACK;//变色grandfather->_col = RED;//变色}break;//旋转后一定平衡
}

insert总代码:

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;//保持根为黑节点}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first > kv.first)parent->_left = cur;elseparent->_right = cur;cur->_parent = parent;while (parent && parent->_col == RED)//只有parent为红,才更新 (parent可能不存在){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle不存在或为黑节点 (旋转){if (cur == parent->_left){RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//旋转后一定平衡}}else{Node* uncle = grandfather->_left;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle不存在或为黑节点 (旋转){if (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//旋转后一定平衡}}}_root->_col = BLACK;//在循环内部不判断root情况,统一处理return true;
}

总代码展示

红黑树总代码:
RBTree.h

#pragma once
#include <iostream>
#include <assert.h>
using namespace std;enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode* _left;RBTreeNode* _right;RBTreeNode* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv): _left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;//保持根为黑节点}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first > kv.first)parent->_left = cur;elseparent->_right = cur;cur->_parent = parent;while (parent && parent->_col == RED)//只有parent为红,才更新 (parent可能不存在){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle不存在或为黑节点 (旋转){if (cur == parent->_left){RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//旋转后一定平衡}}else{Node* uncle = grandfather->_left;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle不存在或为黑节点 (旋转){if (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//旋转后一定平衡}}}_root->_col = BLACK;//在循环内部不判断root情况,统一处理return true;}//左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppNode->_left == parent)ppNode->_left = subR;elseppNode->_right = subR;subR->_parent = ppNode;}}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppNode->_left == parent)ppNode->_left = subL;elseppNode->_right = subL;subL->_parent = ppNode;}}size_t Size(){return _Size(_root);}size_t _Size(Node* root){if (root == nullptr)return 0;;return _Size(root->_left) + _Size(root->_right) + 1;}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return nullptr;}//中序void InOrder(){_InOrder(_root);cout << "end" << endl;}int Height(){return _Height(_root);}private://中序void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << " - ";_InOrder(root->_right);}//求高度int _Height(Node* root){if (root == nullptr)return 0;return max(Height(root->_left), Height(root->_right)) + 1;}Node* _root = nullptr;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/760950.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Agent驱动的RPA——实在Agent(智能体):自动化时代的新引擎

随着人工智能和机器学习技术的快速发展&#xff0c;智能Agent在 RPA领域扮演了革命性的角色。 Agent驱动的RPA不仅实现了传统规则导向自动化工具的功能升级&#xff0c;而且通过引入自主、智能决策与协作能力&#xff0c;为现代企业带来了更高程度的灵活性与智能化水平。随着数…

【python】(03)初识生成器Generator

系列文章回顾 【python】(01)初识装饰器Decorator 【python】(02)初识迭代器Iterator 【python】(03)初识生成器Generator 文章目录 一.生成器的定义二.生成器的作用三.实际代码示例四.常见问题生成器在 Python 中是非常强大和灵活的工具,可以帮助我们高效地处理大型数据集合或…

C. Lexicographically Largest - 思维

题面 分析 如果没有相同的数那么一定是从最后一个开始向前一个个放入集合&#xff0c;这样不会损失&#xff0c;一旦有相同的&#xff0c;从右向左依次放入&#xff0c;那么一旦遇到集合里已经有的元素&#xff0c;此时最优策略就是将当前这个数减一再放进去&#xff0c;那么…

tensorflow中显存分配

tensorflow中显存分配 问题&#xff1a;使用tensorflow-gpu训练模型&#xff0c;GPU的显存都是占满的。 # GPU 1的显存将占满 os.environ["CUDA_VISIBLE_DEVICES"] "1" 原因&#xff1a;默认情况下&#xff0c;tensorflow会把可用的显存全部占光&#…

第1章 计算机系统概述

王道学习 1.1 操作系统的基本概念 1.1.1 操作系统的概念 1.1.2 操作系统的特征 操作系统是一种系统软件&#xff0c;但与其他系统软件和应用软件有很大的不同&#xff0c;它有自己的特殊性即基本特征。操作系统的基本特征包括并发、共享、虚拟和异步。这些概念对理解和掌握…

网站打开慢有哪些原因造成的?该如何优化

网站打开慢可能有多种原因造成&#xff0c;以下是一些常见的导致网站打开慢的原因以及对应的优化方法&#xff1a; 服务器性能不足&#xff1a; 优化方法&#xff1a; 升级服务器配置、使用CDN加速、优化服务器软件和设置、减少服务器负载等。 大量图片和多媒体文件&#xff1…

python中的面向对象特性

面向对象编程&#xff08;Object-Oriented Programming&#xff0c;简称OOP&#xff09;是一种编程范式&#xff0c;它使用“对象”来设计软件。面向对象编程的主要特性包括封装、继承、多态性和抽象。这些特性使得OOP特别适合处理大型、复杂的软件系统。 特性 1. 封装&#…

kail linux破解密码--- 详细过程(配合图文让你看了就会)

1.准备工作 1.vmware虚拟机 2.kali的系统 3.无线网卡一张(这个是必须的我买的是30多块) 4.这里为了实验&#xff0c;和直观的看到效果&#xff0c;用手机开了一个wifi然后使用kali进行破解 2.下载kali然后安装到虚拟机vmware 直接在官网下载 Get Kali | Kali Linux 我选…

WebXR实践——利用aframe框架浏览器展示全景图片

一、效果 话不多说&#xff0c;先上效果 二、代码 index.html <!DOCTYPE html> <html><head><meta charset"utf-8"><title>360&deg; Image</title><meta name"description" content"360&deg; Imag…

面试算法-64-零钱兑换

题目 给你一个整数数组 coins &#xff0c;表示不同面额的硬币&#xff1b;以及一个整数 amount &#xff0c;表示总金额。 计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额&#xff0c;返回 -1 。 你可以认为每种硬币的数量是无限的…

【机器学习】深入解析线性回归模型

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

高精度铸铁平台制造工艺有多精细——河北北重机械

高精度铸铁平台制造工艺通常包括以下几个步骤&#xff1a; 材料准备&#xff1a;选择合适的铸铁材料&#xff0c;并确保其质量符合要求。常用的铸铁材料包括灰铸铁、球墨铸铁等。 模具制造&#xff1a;根据平台的设计要求&#xff0c;制造适用的模具。模具一般由砂型、金属模具…

【python】flask基于cookie和session来实现会话控制

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

js数组去重常见方法

简单数组 1、使用filter()方法&#xff1a;通过filter()方法遍历数组&#xff0c;返回仅包含首次出现的元素的新数组。 const arr [1, 2, 3, 4, 2, 3, 5]; const list arr.filter((item, index) > arr.indexOf(item) index); console.log(list); // [1, 2, 3, 4, 5]2、…

【开源-土拨鼠充电系统】鸿蒙 HarmonyOS 4.0 App+微信小程序+云平台

✨本人自己开发的开源项目&#xff1a;土拨鼠充电系统 ✨踩坑不易&#xff0c;还希望各位大佬支持一下&#xff0c;在Gitee或GitHub给我点个 Start ⭐⭐&#x1f44d;&#x1f44d; ✍Gitee开源项目地址&#x1f449;&#xff1a;https://gitee.com/cheinlu/groundhog-charging…

力扣Lc19--- 268. 丢失的数字(java版)-2024年3月20日

1.题目描述 2.知识点 &#xff08;1&#xff09;比如数组里面有n个数&#xff0c;然后计算这n个数的总和(用等差求和数列计算&#xff09;,然后减去数组的和&#xff0c;用总和减去数组和即为所得 &#xff08;2&#xff09;加强型 for 循环&#xff08;也称为 for-each 循环&…

spring boot切面execution表达式添加多个包路径

问题描述 在Spring Boot中&#xff0c;如果你想为多个包中的方法创建一个切面&#xff0c;你可以在Pointcut注解中使用||操作符来指定多个包。 解决方案&#xff1a; // 定义切入点为两个包中的任意方法 Pointcut("execution(* com.example.package1..*.*(..)) || execu…

Leetcode 459:重复的子字符串

给定一个非空的字符串 s &#xff0c;检查是否可以通过由它的一个子串重复多次构成。 示例 1: 输入: s "abab" 输出: true 解释: 可由子串 "ab" 重复两次构成。示例 2: 输入: s "aba" 输出: false示例 3: 输入: s "abcabcabcabc&quo…

单片机--数电(4)

触发器 数字电路中&#xff1a;分组合逻辑电路与时序逻辑电路两大类 组合逻辑电路的基本单元是门电路&#xff08;与或非等一些门电路&#xff09; 时序逻辑电路的基本单元是触发器 触发器与门电路的区别 门电路某一时刻的输出信号完全取决于该时刻的输入信号&#xff0c;…

销售数据分析怎么做?用好这5个数据分析方法与模型就足够了。

企业经营其实简单来说就是做买卖&#xff0c;有了买卖自然就产生了销售数据&#xff0c;那怎么能让这些销售数据产生价值呢&#xff1f;答案就是数据分析。通过对销售数据的分析&#xff0c;可以帮助企业及时洞察市场动向&#xff0c;发现企业销售过程中的问题&#xff0c;调整…