文章目录
- 1. Java内存模型
- 2. 内存交互
- 3. 三大特性
- 3.1 可见性
- 3.1.1 可见性问题
- 3.1.2 原因
- 3.1.3 解决方法
- 3.2 原子性
- 3.3 有序性
在继续学习JUC之前,我们现在这里介绍一下Java内存模型,也就是JMM,进而引出关键字volatile的使用条件。
1. Java内存模型
Java 内存模型是 Java Memory Model(JMM),本身是一种抽象的概念,实际上并不存在,描述的是一组规则或规范,通过这组规范定义了程序中各个变量(包括实例字段,静态字段和构成数组对象的元素)的访问方式
JMM 作用:
- 屏蔽各种硬件和操作系统的内存访问差异,实现让 Java 程序在各种平台下都能达到一致的内存访问效果
- 规定了线程和内存之间的一些关系
根据 JMM 的设计,系统存在一个主内存(Main Memory),Java 中所有变量都存储在主存中,对于所有线程都是共享的;每条线程都有自己的工作内存(Working Memory),工作内存中保存的是主存中某些变量的拷贝,线程对所有变量的操作都是先对变量进行拷贝,然后在工作内存中进行,不能直接操作主内存中的变量;线程之间无法相互直接访问,线程间的通信(传递)必须通过主内存来完成
主内存和工作内存:
- 主内存:计算机的内存,也就是经常提到的 8G 内存,16G 内存,存储所有共享变量的值
- 工作内存:存储该线程使用到的共享变量在主内存的的值的副本拷贝
JVM 和 JMM 之间的关系:JMM 中的主内存、工作内存与 JVM 中的 Java 堆、栈、方法区等并不是同一个层次的内存划分,这两者基本上是没有关系的,如果两者一定要勉强对应起来:
- 主内存主要对应于 Java 堆中的对象实例数据部分,而工作内存则对应于虚拟机栈中的部分区域
- 从更低层次上说,主内存直接对应于物理硬件的内存,工作内存对应寄存器和高速缓存
2. 内存交互
Java 内存模型定义了 8 个操作来完成主内存和工作内存的交互操作,每个操作都是原子的
非原子协定:没有被 volatile 修饰的 long、double 外,默认按照两次 32 位的操作
- lock:作用于主内存,将一个变量标识为被一个线程独占状态(对应 monitorenter)
- unclock:作用于主内存,将一个变量从独占状态释放出来,释放后的变量才可以被其他线程锁定(对应 monitorexit)
- read:作用于主内存,把一个变量的值从主内存传输到工作内存中
- load:作用于工作内存,在 read 之后执行,把 read 得到的值放入工作内存的变量副本中
- use:作用于工作内存,把工作内存中一个变量的值传递给执行引擎,每当遇到一个使用到变量的操作时都要使用该指令
- assign:作用于工作内存,把从执行引擎接收到的一个值赋给工作内存的变量
- store:作用于工作内存,把工作内存的一个变量的值传送到主内存中
- write:作用于主内存,在 store 之后执行,把 store 得到的值放入主内存的变量中
3. 三大特性
3.1 可见性
可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值
3.1.1 可见性问题
存在不可见问题的根本原因是由于缓存的存在,线程持有的是共享变量的副本,无法感知其他线程对于共享变量的更改,导致读取的值不是最新的。但是 final 修饰的变量是不可变的,就算有缓存,也不会存在不可见的问题。
如下面的代码所示:
@Slf4j(topic = "c.Test20")
public class Test1 {static boolean run = true; //添加volatilepublic static void main(String[] args) throws InterruptedException {Thread t = new Thread(()->{while(run){// ....}});t.start();sleep(1);log.debug("我想停下t");run = false; // 线程t不会如预想的停下来}
}
可以看到,上面的代码在主线程的最后将 run
变量设置为了 false
,但是,线程t并没有像我们预期的一样停下来,这就是由于缓存存在的原因。
3.1.2 原因
我们可以分析下上面的流程:
-
初始状态, t 线程刚开始从主内存读取了 run 的值到工作内存
-
因为 t 线程要频繁从主内存中读取 run 的值,JIT 编译器会将 run 的值缓存至自己工作内存中的高速缓存中,减少对主存中 run 的访问,提高效率。
-
1 秒之后,main 线程修改了 run 的值,并同步至主存,而 t 是从自己工作内存中的高速缓存中读取这个变量的值,结果永远是旧值。
3.1.3 解决方法
-
使用volatile
它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存,修改如下:@Slf4j(topic = "c.Test20") public class Test1 {volatile static boolean run = true; //添加volatilepublic static void main(String[] args) throws InterruptedException {Thread t = new Thread(()->{while(run){// ....}});t.start();sleep(1);log.debug("我想停下t");run = false; // 线程t不会如预想的停下来} }
-
使用synchronized锁
@Slf4j(topic = "c.Test20") public class Test1 {volatile static boolean run = true; //添加volatilefinal static Object lock = new Object();public static void main(String[] args) throws InterruptedException {Thread t = new Thread(()->{while(run){synchronized (lock){if(!run){break;}}}});t.start();sleep(1);log.debug("我想停下t");synchronized (lock){run = false;}} }
3.2 原子性
原子性:不可分割,完整性,也就是说某个线程正在做某个具体业务时,中间不可以被分割,需要具体完成,要么同时成功,要么同时失败,保证指令不会受到线程上下文切换的影响
定义原子操作的使用规则:
- 不允许 read 和 load、store 和 write 操作之一单独出现,必须顺序执行,但是不要求连续
- 不允许一个线程丢弃 assign 操作,必须同步回主存
- 不允许一个线程无原因地(没有发生过任何 assign 操作)把数据从工作内存同步会主内存中
- 一个新的变量只能在主内存中诞生,不允许在工作内存中直接使用一个未被初始化(assign 或者 load)的变量,即对一个变量实施 use 和 store 操作之前,必须先自行 assign 和 load 操作
- 一个变量在同一时刻只允许一条线程对其进行 lock 操作,但 lock 操作可以被同一线程重复执行多次,多次执行 lock 后,只有执行相同次数的 unlock 操作,变量才会被解锁,lock 和 unlock 必须成对出现
- 如果对一个变量执行 lock 操作,将会清空工作内存中此变量的值,在执行引擎使用这个变量之前需要重新从主存加载
- 如果一个变量事先没有被 lock 操作锁定,则不允许执行 unlock 操作,也不允许去 unlock 一个被其他线程锁定的变量
- 对一个变量执行 unlock 操作之前,必须先把此变量同步到主内存中(执行 store 和 write 操作)
3.3 有序性
有操作都是无序的,无序是因为发生了指令重排序
CPU 的基本工作是执行存储的指令序列,即程序,程序的执行过程实际上是不断地取出指令、分析指令、执行指令的过程,为了提高性能,编译器和处理器会对指令重排,一般分为以下三种:
源代码 -> 编译器优化的重排 -> 指令并行的重排 -> 内存系统的重排 -> 最终执行指令
比如下面的代码:
int num = 0;
boolean ready = false;
// 线程1 执行此方法
public void actor1(I_Result r) {if(ready) {r.r1 = num + num;} else {r.r1 = 1;}
}
// 线程2 执行此方法
public void actor2(I_Result r) {num = 2;ready = true;
}
如果执行上面的两个线程,那么可能的结果有哪些呢?,很明显有下面两种:
- 先执行线程1再执行线程2,那么结果是1
- 先执行线程2再执行线程1,那么结果是4
- 但是,除此之外,还有一种发生重排的情况,即线程2的指令重排为先执行
ready = true;
再执行num = 2;
,这样的话,结果就是0
如果我们希望指令不进行重排,那么可以再定义变量时加一个volatile修饰变量 ready
,这样,可以使得ready
代码之前的部分不发生重排,所以 num
就不用加 volatile修饰了。