sheng的学习笔记-AI-Inception network

 目录:sheng的学习笔记-AI目录-CSDN博客

 

基础知识

构建卷积层时,你要决定过滤器的大小究竟是1×1(原来是1×3,猜测为口误),3×3还是5×5,或者要不要添加池化层。而Inception网络的作用就是代替你来决定,虽然网络架构因此变得更加复杂,但网络表现却非常好

本文用到基础知识

1*1卷积,需要看文章:sheng的学习笔记-AI-Network in Network(NIN)和1*1卷积-CSDN博客

 残差网络:sheng的学习笔记-AI-残差网络-Residual Networks (ResNets)-CSDN博客

 

谷歌 Inception 网络简介

原理

构建卷积层时,你要决定过滤器的大小究竟是1×1,3×3还是5×5,或者要不要添加池化层。而Inception网络的作用就是代替你来决定,虽然网络架构因此变得更加复杂,但网络表现却非常好

这是你28×28×192维度的输入层,Inception网络或Inception层的作用就是代替人工来确定卷积层中的过滤器类型,或者确定是否需要创建卷积层或池化层

如果使用1×1卷积,输出结果会是28×28×#(某个值),假设输出为28×28×64,并且这里只有一个层

 如果使用3×3的过滤器,那么输出是28×28×128。然后我们把第二个值堆积到第一个值上,为了匹配维度,我们应用same卷积,输出维度依然是28×28,和输入维度相同,即高度和宽度相同

或许你会说,我希望提升网络的表现,用5×5过滤器或许会更好,我们不妨试一下,输出变成28×28×32,我们再次使用same卷积,保持维度不变。

 

或许你不想要卷积层,那就用池化操作,得到一些不同的输出结果,我们把它也堆积起来,这里的池化输出是28×28×32。为了匹配所有维度,我们需要对最大池化使用padding,它是一种特殊的池化形式,因为如果输入的高度和宽度为28×28,则输出的相应维度也是28×28。然后再进行池化,padding不变,步幅为1

 

有了这样的Inception模块,你就可以输入某个量,因为它累加了所有数字,这里的最终输出为32+32+128+64=256。Inception模块的输入为28×28×192,输出为28×28×256。基本思想是Inception网络不需要人为决定使用哪个过滤器或者是否需要池化,而是由网络自行确定这些参数,你可以给网络添加这些参数的所有可能值,然后把这些输出连接起来,让网络自己学习它需要什么样的参数,采用哪些过滤器组合 

 问题-参数太多

上述的方法,有个问题,参数太多,导致计算量太大

看这个5×5的过滤器,这是一个28×28×192的输入块,执行一个5×5卷积,它有32个过滤器,输出为28×28×32。前一张幻灯片中,我用一个紫色的细长块表示,这里我用一个看起来更普通的蓝色块表示。我们来计算这个28×28×32输出的计算成本,它有32个过滤器,因为输出有32个通道,每个过滤器大小为5×5×192,输出大小为28×28×32,所以你要计算28×28×32个数字。对于输出中的每个数字来说,你都需要执行5×5×192次乘法运算,所以乘法运算的总次数为每个输出值所需要执行的乘法运算次数(5×5×192)乘以输出值个数(28×28×32),把这些数相乘结果等于1.2亿(120422400),计算成本太大

解决方案-使用1*1卷积

1*1卷积的原理,在基础知识中有连接,可以查看

对于输入层,使用1×1卷积把输入值从192个通道减少到16个通道。然后对这个较小层运行5×5卷积,得到最终输出。请注意,输入和输出的维度依然相同,输入是28×28×192,输出是28×28×32,和上一页的相同。但我们要做的就是把左边这个大的输入层压缩成这个较小的的中间层,它只有16个通道,而不是192个

看看这个计算成本,应用1×1卷积,过滤器个数为16,每个过滤器大小为1×1×192,这两个维度相匹配(输入通道数与过滤器通道数),28×28×16这个层的计算成本是,输出28×28×192中每个元素都做192次乘法,用1×1×192来表示,相乘结果约等于240万

 

240万只是第一个卷积层的计算成本,第二个卷积层的计算成本:28×28×32,对每个输出值应用一个5×5×16维度的过滤器,计算结果为1000万。

所以所需要乘法运算的总次数是这两层的计算成本之和,也就是1204万,与上一张幻灯片中的值做比较,计算成本从1.2亿下降到了原来的十分之一,即1204万

Inception 网络(Inception network)

Inception模块

Inception模块会将之前层的激活或者输出作为它的输入,作为前提,这是一个28×28×192的输入。例子是:

  • 先通过一个1×1的层,再通过一个5×5的层,1×1的层可能有16个通道,而5×5的层输出为28×28×32,共32个通道
  • 为了在这个3×3的卷积层中节省运算量,你也可以做相同的操作,这样的话3×3的层将会输出28×28×128
  • 通过一个1×1的卷积层,这时就不必在后面再跟一个1×1的层了,这样的话过程就只有一步,假设这个层的输出是28×28×64
  • 再加上池化层

为了能在最后将这些输出都连接起来,我们会使用same类型的padding来池化,使得输出的高和宽依然是28×28,这样才能将它与其他输出连接起来。但注意,如果你进行了最大池化,即便用了same padding,3×3的过滤器,stride为1,其输出将会是28×28×192,其通道数或者说深度与这里的输入(通道数)相同。所以看起来它会有很多通道,我们实际要做的就是再加上一个1×1的卷积层,去进行我们在1×1卷积层的视频里所介绍的操作,将通道的数量缩小,缩小到28×28×32。也就是使用32个维度为1×1×192的过滤器,所以输出的维度其通道数缩小为32。这样就避免了最后输出时,池化层占据所有的通道

Inception 网络

最后,将这些方块全都连接起来。在这过程中,把得到的各个层的通道都加起来,最后得到一个28×28×256的输出。通道连接实际就是之前视频中看到过的,把所有方块连接在一起的操作。这就是一个Inception模块,而Inception网络所做的就是将这些模块都组合到一起

 在网络的最后几层,通常称为全连接层,在它之后是一个softmax层(编号1)来做出预测,这些分支(编号2)所做的就是通过隐藏层(编号3)来做出预测,所以这其实是一个softmax输出(编号2),这(编号1)也是。这是另一条分支(编号4),它也包含了一个隐藏层,通过一些全连接层,然后有一个softmax来预测,输出结果的标签

你应该把它看做Inception网络的一个细节,它确保了即便是隐藏单元和中间层(编号5)也参与了特征计算,它们也能预测图片的分类。它在Inception网络中,起到一种调整的效果,并且能防止网络发生过拟合。

Inception-v4

v4的整体网络框架以及其中用到的inception-A、B、C block如图4所示,其中用到的stem-block如图5所示。

 

从图4来看,google提出的v4版本中用到的这三个block,从结构上来看,明显可以看出大量使用1*1卷积方法,这样就减少很多参数,从A-boock来看,block的不同通道,不考虑1*1卷积,分别使用了池化,不操作,一层3*3的卷积,两层3*3的卷积,从B-block来看,基本上相当于将A-block里的卷积用卷积核分解来替代,参数数量可以减少为原来的2/kernel-size,我思考这里的原因是,B-block因为比A深,所以为了保证提取复杂特征,所以要设计更加复杂的结构,但是为了减少参数数量在这里就用卷积核分解

Inception-ResNet-v2

这个网络结构与v4的整体框架相似,但其中用的block中用残差连接的思想替代了复杂的结构,两个网络框架的对比如图6所示

残差网络的细节,在基础知识中有连接

从图7来看,Inception ResNet v2版本里用的block,可以看出,几个block深度不同,结构的复杂程度却是相似的,而v4的block随着深度的增加,block在变得越来越复杂,随之而来,Inception ResNet v2里面用到的参数就很少了。

 

Inception v4 VS Inception ResNet v2 

从图8两者对比效果来看,还是残差神经网络更胜一筹

参考文章:

Inception-ResNet卷积神经网络 - 知乎

吴恩达深度学习的视频 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/759425.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智慧安全:守护智慧城市的安全屏障

随着信息技术的迅猛发展,智慧城市已成为现代城市发展的重要方向。智慧城市通过集成应用先进的信息通信技术,实现城市管理、服务、运行的智能化,为城市的可持续发展注入了新的活力。然而,在智慧城市的建设过程中,安全问…

在windows上安装Jenkins

jenkins安装 下载jenkins 官网:Jenkins download and deployment 官方文档说明:Jenkins User Documentation 安装jenkins1.点击下载好的安装包,点击Next 2.选择一个安装路径 如果系统是windows家庭版打不开策略就创建一个txt文件&#xff0c…

漏洞发现-漏扫项目篇Poc开发Yaml语法反链判断不回显检测Yaml生成

知识点 1、Xray&Afrog-Poc开发-环境配置&编写流程 2、Xray-Poc开发-数据回显&RCE不回显&实验室 3、Afrog-Poc开发-数据回显&RCE不回显&JDNI注入 章节点: 漏洞发现-Web&框架组件&中间件&APP&小程序&系统 扫描项目-综合…

28-5 文件上传漏洞 - 图片马

一、文件内容检测 解析漏洞定义 控制文件是否被当做后端脚本处理 二、图片马绕过 图片马;在图片中包含一句话木马。利用解析漏洞如.htaccess 或文件包含漏洞,对图片马进行解析,执行其中的恶意代码。优势在于可以绕过多种防护机制。 三、图片马制作方法: # 一句话马示例…

数据结构与算法4-冒泡排序

文章目录 1. 认识冒泡排序2. 图示2.1 图示12.2 图示2 3. 代码 1. 认识冒泡排序 双层for循环,每次选出最大的数“浮”到数组的最后面;时间复杂度O( n 2 n^2 n2),空间复杂度O(1);重复地遍历待排序的数列,一次比较两个元素&#xff…

利用 Claude 3 on Amazon Bedrock 和 Streamlit 的“终极组合”,开发智能对话体验

概述 通过本文,您将学会如何利用 Streamlit 框架快速搭建前端交互界面。该界面将集成图像上传功能,让用户可以方便地提交待处理图片。在后端,我们将借助 Amazon Bedrock 的 Message API,调用 Claude 3 家族中的 Sonnet 模型对图像…

OpenWRT+zeroTier旁路由组网

前言 我之前写过一篇文章,探究了zeroTier的最基础的玩法,那篇文章结尾我提到了使用zeroTier虽然实现组网了,但是我只能访问局域网中制定的设备,局域网中其他设备无法访问,这篇文章我又研究了一套方案openwrtzeroTier旁…

怎么理解面向对象?一文带你全面理解

文章目录 1、类和对象(1)面向过程和面向对象初步认识(2)类的引入(3)类的定义(4)类的访问限定符及封装4.1 访问限定符4.2 封装 (5)类的作用域(6&am…

Jackson 2.x 系列【3】解析器 JsonParser

有道无术,术尚可求,有术无道,止于术。 本系列Jackson 版本 2.17.0 源码地址:https://gitee.com/pearl-organization/study-seata-demo 文章目录 1. 前言2. 解析原理3. 案例演示3.1 创建 JsonParser3.2 解析3.3 读取3.4 测试 1. 前…

水果软件FL Studio 21 for mac 21.2.3.3586破解版的最新版本2024介绍安装

音乐是人类最美好的语言,它能够跨越国界、文化和语言,将人们紧密地联系在一起。在当今数字化时代,音乐创作已经不再是专业人士的专利,越来越多的音乐爱好者开始尝试自己动手制作音乐。而FL Studio21中文版编曲软件正是这样一个为你…

PyTorch 深度学习(GPT 重译)(五)

十二、通过指标和增强改进训练 本章涵盖 定义和计算精确率、召回率以及真/假阳性/阴性 使用 F1 分数与其他质量指标 平衡和增强数据以减少过拟合 使用 TensorBoard 绘制质量指标图 上一章的结束让我们陷入了困境。虽然我们能够将深度学习项目的机制放置好,但实…

故障诊断 | 一文解决,GRNN广义回归神经网络的故障诊断(Matlab)

文章目录 效果一览文章概述专栏介绍模型描述源码设计参考资料效果一览 文章概述 故障诊断 | 一文解决,GRNN广义回归神经网络的故障诊断(Matlab) 专栏介绍

TinTin Web3 Bounty 挑战杯开启,Sui 向你发出挑战邀请

以下文章来源于TinTinLand ,作者TinTinLand。 2024 年开年最火的是什么? 对 Web3 来说,Bounty 任务应该是普通人获得行业“一杯羹”的重要捷径! 通过深入学习各类 Web3 技术,凭借实战锻炼开发创新项目,就…

Linux CentOS 7.6安装mysql5.7.26详细保姆级教程

一、通过wget下载mysql安装包 1、下载 //进入home目录 cd /home //下载mysql压缩包 wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.26-linux-glibc2.12-x86_64.tar.gz //解压 tar -xvf mysql-5.7.26-linux-glibc2.12-x86_64.tar.gz //重命名文件夹 mv mys…

MongoDB系列之查询计划

概述 一个查询具体如何被执行的过程,称为查询计划。MongoDB采用自底向上的方式来构造查询计划,每一个查询计划(query plan)都会被分解为若干个有层次的阶段(stage)。整个查询计划最终会呈现出一颗多叉树。…

ReaLTaiizor开源.NET winform控件库学习使用

一、ReaLTaiizor项目介绍 1.1 介绍及地址 基于MIT license开源、免费、美观的.NET WinForm UI控件库:ReaLTaiizor ReaLTaiizor是一个开源免费的.NET WinForms控件库,它提供了广泛的组件和丰富的主题选项(用户友好、注重设计)&am…

提供数字免疫力:采取整体方法来优化您的网络

采用数字技术已成为许多美国企业的关键竞争优势,导致其在与新部署的云解决方案的安全连接方面的投资不断增加。然而,随着越来越多的关键应用程序迁移到云端,公司保护其敏感数据和资源变得更具挑战性,因为这些资产现在超出了内部防…

基于SpringBoot的学生成绩管理系统

基于SpringBootVue的家教管理系统的设计与实现~ 开发语言:Java 数据库:MySQL 技术:SpringBoot 系统功能结构展示 登录界面图 现今,越来越多的人乐于选择一项合适的管理方案,但是普通用户往往受到管理经验地限制&…

ES 常见面试题及答案

目录 es 写入数据流程 es 删除数据流程 es 读数据流程 es 部署的服务有哪些角色 es 的实现原理 es 和lucence 关系 如何提高写入效率 提高搜索效率 es doc value指的啥 分片指的啥,定义后可不可义再修改 深分页如何优化 对于聚合操作是如何优化的 元数据…

[自研开源] MyData 数据集成之任务调度模式 v0.7

开源地址:gitee | github 详细介绍:MyData 基于 Web API 的数据集成平台 部署文档:用 Docker 部署 MyData 使用手册:MyData 使用手册 试用体验:http://demo.mydata.work 交流 Q 群:430089673 概述 本…