一、线性回归原理复习
1、什么是线性回归
(1)有个假设函数,假定特征值和目标值满足这样的关系
w1x1 + w2x2 + ... + wnxn + b = y
(2)构造损失函数
均方误差、最小二乘法
(3)优化损失
正规方程和梯度下降
(4)当梯度下降到一定程度,使得损失函数比较小的时候,所对应的权重和偏置,就是我们要求的模型参数
二、案例:实现线性回归的训练
1、案例背景
(1)假设随机指定100个点,只有一个特征
(2)数据本身的分布为 y = 0.8 * x + 0.7
(3)这里将数据分布的规律确定,是为了使我们训练出的参数跟真实的参数(即0.8和0.7)比较是否训练准确
2、准备真实数据
x:特征值
y_true:目标值
y_true = 0.8 * x + 0.7
假定x和y之间的关系,满足y = kx + b
经过线性回归,求出来k≈0.8,b≈0.7
3、流程分析
(1)准备100个样本
(100, 1) * (1, 1) = (100, 1)
100行1列,乘以1行1列,得出100行1列
y_predict = x * 权重(1, 1) + 偏置(1, 1)
y_predict = tf.matmul(x, weights) + bias
(2)构造损失函数
error = tf.reduce_mean(tf.square(y_predict - y_true))
求均方误差
(3)优化损失函数
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error)
(4)训练
反复的run这个optimizer,不断的更新迭代
4、用到的API
矩阵乘法:tf.matmul(x, w)
平方:tf.square(error)
均值:tf.reduce_mean(error)
梯度下降优化:
tf.train.GradientDescentOptimizer(learning_rate)
说明:
(1)梯度下降优化器
(2)learning_rate:学习率,一般为0-1之间比较小的值
(3)梯度下降优化器实例化后的方法
minimize(loss):让error最小化
(4)return:梯度下降op
tensorflow2.0版本用tf.keras.optimizers.SGD
优化器对照:https://blog.csdn.net/u013587606/article/details/105138271
5、代码实现(tensorflow2.0版本写法)
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tfdef tensorflow_demo():"""TensorFlow的基本结构"""# TensorFlow实现加减法运算a_t = tf.constant(2)b_t = tf.constant(3)c_t = a_t + b_tprint("TensorFlow加法运算结果:\n", c_t)print(c_t.numpy())# 2.0版本不需要开启会话,已经没有会话模块了return Nonedef graph_demo():"""图的演示"""# TensorFlow实现加减法运算a_t = tf.constant(2)b_t = tf.constant(3)c_t = a_t + b_tprint("TensorFlow加法运算结果:\n", c_t)print(c_t.numpy())# 查看默认图# 方法1:调用方法default_g = tf.compat.v1.get_default_graph()print("default_g:\n", default_g)# 方法2:查看属性# print("a_t的图属性:\n", a_t.graph)# print("c_t的图属性:\n", c_t.graph)# 自定义图new_g = tf.Graph()# 在自己的图中定义数据和操作with new_g.as_default():a_new = tf.constant(20)b_new = tf.constant(30)c_new = a_new + b_newprint("c_new:\n", c_new)print("a_new的图属性:\n", a_new.graph)print("b_new的图属性:\n", b_new.graph)# 开启new_g的会话with tf.compat.v1.Session(graph=new_g) as sess:c_new_value = sess.run(c_new)print("c_new_value:\n", c_new_value)print("我们自己创建的图为:\n", sess.graph)# 可视化自定义图# 1)创建一个writerwriter = tf.summary.create_file_writer("./tmp/summary")# 2)将图写入with writer.as_default():tf.summary.graph(new_g)return Nonedef session_run_demo():"""feed操作"""tf.compat.v1.disable_eager_execution()# 定义占位符a = tf.compat.v1.placeholder(tf.float32)b = tf.compat.v1.placeholder(tf.float32)sum_ab = tf.add(a, b)print("a:\n", a)print("b:\n", b)print("sum_ab:\n", sum_ab)# 开启会话with tf.compat.v1.Session() as sess:print("占位符的结果:\n", sess.run(sum_ab, feed_dict={a: 1.1, b: 2.2}))return Nonedef tensor_demo():"""张量的演示"""tensor1 = tf.constant(4.0)tensor2 = tf.constant([1, 2, 3, 4])linear_squares = tf.constant([[4], [9], [16], [25]], dtype=tf.int32)print("tensor1:\n", tensor1)print("tensor2:\n", tensor2)print("linear_squares:\n", linear_squares)# 张量类型的修改l_cast = tf.cast(linear_squares, dtype=tf.float32)print("before:\n", linear_squares)print("l_cast:\n", l_cast)return Nonedef variable_demo():"""变量的演示"""a = tf.Variable(initial_value=50)b = tf.Variable(initial_value=40)c = tf.add(a, b)print("a:\n", a)print("b:\n", b)print("c:\n", c)with tf.compat.v1.variable_scope("my_scope"):d = tf.Variable(initial_value=30)e = tf.Variable(initial_value=20)f = tf.add(d, e)print("d:\n", d)print("e:\n", e)print("f:\n", f)return Nonedef linear_regression():"""自实现一个线性回归"""# 1、准备数据x = tf.random.normal(shape=[100,1])y_true = tf.matmul(x, [[0.8]]) + 0.7# 2、构造模型# 定义模型参数,用变量weights = tf.Variable(initial_value=tf.random.normal(shape=[1, 1]))bias = tf.Variable(initial_value=tf.random.normal(shape=[1, 1]))y_predict = tf.matmul(x, weights) + bias# 3、构造损失函数error = tf.reduce_mean(tf.square(y_predict - y_true))# 4、优化损失#optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error)optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)# 5、查看初始化模型参数之后的值print("训练前模型参数为:权重%f,偏置%f,损失%f" % (weights, bias, error))# 6、开始训练num_epoch = 10000 # 定义迭代次数for e in range(num_epoch): # 迭代多次with tf.GradientTape() as tape:y_predict = tf.matmul(x, weights) + biaserror = tf.reduce_mean(tf.square(y_predict - y_true))grads = tape.gradient(error, [weights, bias]) # 求损失关于参数weights、bias的梯度optimizer.apply_gradients(grads_and_vars=zip(grads, [weights, bias])) # 自动根据梯度更新参数,即利用梯度信息修改weights与bias,使得损失减小print("训练后模型参数为:权重%f,偏置%f,损失%f" % (weights, bias, error))return Noneif __name__ == "__main__":# 代码1:TensorFlow的基本结构# tensorflow_demo()# 代码2:图的演示#graph_demo()# feed操作#session_run_demo()# 代码4:张量的演示#tensor_demo()# 代码5:变量的演示#variable_demo()# 代码6:自实现一个线性回归linear_regression()
运行结果:
训练前模型参数为:权重-0.941857,偏置-0.845241,损失4.750606
训练后模型参数为:权重0.799998,偏置0.699998,损失0.000000
训练后,权重无限接近0.8,偏置无限接近0.7
参考资料:
https://stackoverflow.com/questions/68879963/valueerror-tape-is-required-when-a-tensor-loss-is-passed
https://blog.csdn.net/AwesomeP/article/details/123787448