C++数据结构--红黑树

目录

  • 一、红黑树的概念
  • 二、红黑树的性质
  • 三、红黑树的节点的定义
  • 四、红黑树结构
  • 五、红黑树的插入操作
    • 参考代码
  • 五、代码汇总

一、红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路
径会比其他路径长出俩倍,因而是接近平衡的。如图所示:
在这里插入图片描述

二、红黑树的性质

  1. 每个结点不是红色就是黑色。
  2. 根节点是黑色的。
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的。
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点。
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)。

问题:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?

因为根节点是黑色是固定的,并且不能有连续的红色节点,每条路径黑色节点的个数一样,也就是说最短路就是全黑,最长路径就是一黑一红相间,所以一条路径的红色节点要么和黑色节点一样多,要么少于黑色节点,即同一条路径黑色节点的占比是大于等于50%的,所以最长路径一定不超过最短路径的2倍。

三、红黑树的节点的定义

	//通过枚举定义红色和黑色的常量enum Colour{RED,BLACK};template <class K,class V>struct RBTreeNode{public://红黑树存放的值pair<K, V> _kv;//节点的三叉链指针RBTreeNode<K,V>* _left;RBTreeNode<K,V>* _right;RBTreeNode<K,V>* _parent;//节点的颜色Colour _col;//构造函数RBTreeNode(const pair<K, V>& kv):_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED){}};

思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?
这个问题就是关于插入节点的时候我们默认插入的是黑色的节点还是红色的节点了,根据红黑树的规则,每一条路径的黑色节点的个数是一样的,假如我们插入黑色节点,那么某条路径的黑色节点就多了一个,也就是说其它路径的黑色节点也要增加一个,但是我们只插入了一个节点,要令其它路径的黑色节点的数量都增加一个,这个操作的难度显然是很大的,但是如果我们默认插入一个红色节点,那么我们最多违反了根节点为黑色或者连续两个红色节点的规则,主要还是容易违反连续两个红色节点的规则,这个问题只会影响当前节点到祖先这条路径,不会影响其他路径的节点,所以处理起来会更简洁一些,所以我们默认插入的节点是红色的。

四、红黑树结构

在这里插入图片描述

五、红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  1. 按照二叉搜索树的规则插入新节点。
  2. 检测新节点插入后,红黑树的性质是否遭到破坏,如果是,就要通过变色加旋转操作维持红黑树的性质。

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点。

情况一: cur为红,p为红,g为黑,u存在且为红。
在这里插入图片描述
情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑。
因为旋转后需要把p变成黑色,所以p节点和p的父节点不能再出现连续两个红色节点,所以旋转+变色后就不用再沿祖先路径更新了。

在这里插入图片描述
情况一:
在这里插入图片描述
情况二:
在这里插入图片描述
情况三:
在这里插入图片描述
情况四:
在这里插入图片描述

参考代码

		bool Insert(const pair<K, V>& kv){//如果是空树,那么就直接插入一个黑色节点做根即可//注意要改颜色,因为节点的颜色默认是红色的if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}//根据二叉搜索树的规则插入节点,同时记录父节点Node* parent = nullptr;Node* cur = _root;while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(kv);if (kv.first < parent->_kv.first){parent->_left = cur;cur->_parent = parent;}else if (kv.first > parent->_kv.first){parent->_right = cur;cur->_parent = parent;}//走到这里已经插入完成,后面是检查新插入的节点有没有破坏红黑树的规则的逻辑//检查新插入的节点是否满足红黑树的规则,如果不满足就要进行变色/变色+旋转//因为新插入的cur节点的颜色一定是红色的,当cur的父节点存在并且为红色//时说明出现了连续的两个红色节点,这时需要进行变色/变色+旋转,如果父节点// 不存在或者存在且为黑色时就无需再处理了。// 为什么父节点有可能不存在?因为这是一个循环,循环更新往祖先处理可能到达根节点,//到了根节点就无需再处理了while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;if (cur == parent->_left){//             grandfather//     parent//cur//画图//叔叔存在且为红if (uncle && uncle->_col == RED){//变色parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续沿祖先路径检查cur = grandfather;parent = cur->_parent;//这里曾经漏写了}//叔叔不存在或者存在且为黑else//(uncle==nullptr||uncle->_col==BLACK){//单纯的左边高,进行右单旋+变色RotateR(grandfather);grandfather->_col = RED;parent->_col = BLACK;//旋转完之后无需再沿祖先路径处理break;}}else//cur == parent->_right{//              grandfather//       parent//              cur//画图//叔叔存在且为红if (uncle && uncle->_col == RED){//变色parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续往上调整cur = grandfather;parent = cur->_parent;//这里曾经忘记写}//叔叔不存在或者存在且为黑else//(uncle==nullptr || uncle->_col == BLACK){//左右双旋RotateL(parent);RotateR(grandfather);//变色grandfather->_col = RED;cur->_col = BLACK;//旋转后就无需再沿祖先路径检查了,具体原因画图理解break;}}}else//(parent == grandfather->_right){Node* uncle = grandfather->_left;if (cur == parent->_right){//          grandfather//                         parent//                                    cur//画图//叔叔存在且为红if (uncle && uncle->_col == RED){//变色parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续沿祖先路径检查cur = grandfather;parent = cur->_parent;}//叔叔不存在或者存在且为黑else//(uncle==nullptr || uncle->_col == BLACK){//单纯的右边高,进行左单旋+变色RotateL(grandfather);grandfather->_col = RED;parent->_col = BLACK;//旋转+变色后就不需要再沿祖先路径检查了break;}}else//(cur == parent->_left){//          grandfather//                          parent//          cur//叔叔存在且为红if (uncle && uncle->_col == RED){//变色parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续沿祖先路径检查cur = grandfather;parent = cur->_parent;}//叔叔不存在或者存在且为黑else//(uncle==nullptr || uncle->_col == BLACK){//根据模型可知需要右左双旋+变色RotateR(parent);RotateL(grandfather);grandfather->_col = RED;cur->_col = BLACK;//旋转后就不需要再沿祖先路径检查了break;}}}}_num++;//最后记得把根节点的颜色改成黑色_root->_col = BLACK;return true;}//旋转的细节如果不清楚的话请看上一篇关于AVL树的旋转,红黑树的旋转和AVL树的旋转是一样的void RotateL(Node* parent){assert(parent);Node* cur = parent->_right;Node* curleft = cur->_left;Node* parentParent = parent->_parent;parent->_right = curleft;cur->_left = parent;if (curleft){curleft->_parent = parent;}parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = cur;}else{parentParent->_right = cur;}cur->_parent = parentParent;}}void RotateR(Node* parent){assert(parent);Node* cur = parent->_left;Node* curright = cur->_right;Node* parentParent = parent->_parent;parent->_left = curright;cur->_right = parent;if (curright){curright->_parent = parent;}parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = cur;}else{parentParent->_right = cur;}cur->_parent = parentParent;}}

五、代码汇总

#pragma once#include <iostream>
using namespace std;
#include <assert.h>namespace kb
{enum Colour{RED,BLACK};template <class K,class V>struct RBTreeNode{public://红黑树存放的值pair<K, V> _kv;//节点的三叉链指针RBTreeNode<K,V>* _left;RBTreeNode<K,V>* _right;RBTreeNode<K,V>* _parent;//节点的颜色Colour _col;//构造函数RBTreeNode(const pair<K, V>& kv):_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED){}};template <class K,class V>class RBTree{typedef RBTreeNode<K, V> Node;public:bool Insert(const pair<K, V>& kv){//如果是空树,那么就直接插入一个黑色节点做根即可//注意要改颜色,因为节点的颜色默认是红色的if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}//根据二叉搜索树的规则插入节点,同时记录父节点Node* parent = nullptr;Node* cur = _root;while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(kv);if (kv.first < parent->_kv.first){parent->_left = cur;cur->_parent = parent;}else if (kv.first > parent->_kv.first){parent->_right = cur;cur->_parent = parent;}//走到这里已经插入完成,后面是检查新插入的节点有没有破坏红黑树的规则的逻辑//检查新插入的节点是否满足红黑树的规则,如果不满足就要进行变色/变色+旋转//因为新插入的cur节点的颜色一定是红色的,当cur的父节点存在并且为红色//时说明出现了连续的两个红色节点,这时需要进行变色/变色+旋转,如果父节点// 不存在或者存在且为黑色时就无需再处理了。// 为什么父节点有可能不存在?因为这是一个循环,循环更新往祖先处理可能到达根节点,//到了根节点就无需再处理了while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;if (cur == parent->_left){//             grandfather//     parent//cur//画图//叔叔存在且为红if (uncle && uncle->_col == RED){//变色parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续沿祖先路径检查cur = grandfather;parent = cur->_parent;//这里曾经漏写了}//叔叔不存在或者存在且为黑else//(uncle==nullptr||uncle->_col==BLACK){//单纯的左边高,进行右单旋+变色RotateR(grandfather);grandfather->_col = RED;parent->_col = BLACK;//旋转完之后无需再沿祖先路径处理break;}}else//cur == parent->_right{//              grandfather//       parent//              cur//画图//叔叔存在且为红if (uncle && uncle->_col == RED){//变色parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续往上调整cur = grandfather;parent = cur->_parent;//这里曾经忘记写}//叔叔不存在或者存在且为黑else//(uncle==nullptr || uncle->_col == BLACK){//左右双旋RotateL(parent);RotateR(grandfather);//变色grandfather->_col = RED;cur->_col = BLACK;//旋转后就无需再沿祖先路径检查了,具体原因画图理解break;}}}else//(parent == grandfather->_right){Node* uncle = grandfather->_left;if (cur == parent->_right){//          grandfather//                         parent//                                    cur//画图//叔叔存在且为红if (uncle && uncle->_col == RED){//变色parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续沿祖先路径检查cur = grandfather;parent = cur->_parent;}//叔叔不存在或者存在且为黑else//(uncle==nullptr || uncle->_col == BLACK){//单纯的右边高,进行左单旋+变色RotateL(grandfather);grandfather->_col = RED;parent->_col = BLACK;//旋转+变色后就不需要再沿祖先路径检查了break;}}else//(cur == parent->_left){//          grandfather//                          parent//          cur//叔叔存在且为红if (uncle && uncle->_col == RED){//变色parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;//继续沿祖先路径检查cur = grandfather;parent = cur->_parent;}//叔叔不存在或者存在且为黑else//(uncle==nullptr || uncle->_col == BLACK){//根据模型可知需要右左双旋+变色RotateR(parent);RotateL(grandfather);grandfather->_col = RED;cur->_col = BLACK;//旋转后就不需要再沿祖先路径检查了break;}}}}_num++;//最后记得把根节点的颜色改成黑色_root->_col = BLACK;return true;}size_t Size(){return _num;}bool Isbalance(){return _Isbalance(_root);}void Inorder(){_Inorder(_root);}private:bool CheckColour(Node* root, int blackNum, int BenchMark){//走到空树说明这条路径已经走完了,需要检查黑色节点的个数和基准值相不相等if (root == nullptr){//如果不相等,证明不平衡,返回falseif (blackNum != BenchMark){return false;}//如果相等,则说明本条路径没有出事,还要检查其它路径return true;}//如果出现连续红色节点证明这棵树出问题了,返回falseif (root->_col == RED && root->_parent && root->_parent->_col == RED){return false;}if (root->_col == BLACK){blackNum++;}//递归检查所有路径的颜色return CheckColour(root->_left, blackNum, BenchMark)&& CheckColour(root->_right, blackNum, BenchMark);}bool _Isbalance(Node* root){//空树可以认为是平衡的if (root == nullptr){return true;}//根节点不是黑色说明这棵树出事了if (root->_col != BLACK){return false;}//先算出一条路径的黑色节点的个数作为基准值,检查其它路径的黑色节点数目是否跟这个标准值//是否一样,如果不一样就证明这棵树不平衡了,那么如果这个基准值本身就是错的呢,那也没有关系,//只要有路径的黑色节点和其它路径不相等,就说明肯定有其中一条路径出问题了,至于是哪条路径//出问题就不重要了int BenchMark = 0;Node* cur = root;while (cur){if (cur->_col == BLACK){BenchMark++;}cur = cur->_left;}//检查所有路径中是否有连续红色节点和各路径中黑色节点的数目是否相等return CheckColour(root, 0, BenchMark);}void _Inorder(Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_kv.second << " ";_Inorder(root->_right);}//旋转的细节如果不清楚的话请看上一篇关于AVL树的旋转,红黑树的旋转和AVL树的旋转是一样的void RotateL(Node* parent){assert(parent);Node* cur = parent->_right;Node* curleft = cur->_left;Node* parentParent = parent->_parent;parent->_right = curleft;cur->_left = parent;if (curleft){curleft->_parent = parent;}parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = cur;}else{parentParent->_right = cur;}cur->_parent = parentParent;}}void RotateR(Node* parent){assert(parent);Node* cur = parent->_left;Node* curright = cur->_right;Node* parentParent = parent->_parent;parent->_left = curright;cur->_right = parent;if (curright){curright->_parent = parent;}parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = cur;}else{parentParent->_right = cur;}cur->_parent = parentParent;}}private:Node* _root = nullptr;int _num = 0;//统计树的节点个数};void testRBTree(void){RBTree<int, int> rbt;int arr[]= { 16, 3, 7, 11, 9, 26, 18, 14, 15 };for (const auto& e : arr){rbt.Insert(make_pair(e, e));}/*rbt.Inorder();*/cout << rbt.Size() << endl;bool ret = rbt.Isbalance();cout << ret << endl;cout << endl;}void testRBTree1(void){RBTree<int, int> rbt;int N = 10000;srand((unsigned int)time(nullptr));for (size_t i=0;i<N;i++){int e = rand();rbt.Insert(make_pair(e, e));}cout << rbt.Size() << endl;bool ret = rbt.Isbalance();cout << ret << endl;cout << "插入完成" << endl;}
}

以上就是红黑树的相关内容了,最重要的是要理解当红黑树插入元素后违反了红黑树的规则时该如何对节点进行旋转加变色来使这棵红黑树重新回到平衡的。至于删除节点的操作就不实现了,有兴趣的可以去看看《算法导论》这本书,里面有讲红黑树删除操作的。

好啦,以上就是今天想要跟大家谈的关于红黑树的最重要的内容了,你学会了吗?如果你感觉到有所帮助,那么点点小心心,点点关注呗,后期还会持续更新C++的相关知识哦,我们下期见啦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/75898.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL——笔试测试题

解析&#xff1a; 要查询各科目的最大分数&#xff0c;可以使用如下的SQL语句&#xff1a; SELECT coursename, MAX(score) FROM t_stuscore GROUP BY coursename; 这条SQL语句使用了MAX()聚合函数来获取每个科目的最大分数&#xff0c;并使用GROUP BY子句按照科目进行分组…

Nginx重写功能

Nginx重写功能 一、Nginx常见模块二、访问路由location2.1location常用正则表达式2.2、location的分类2.3、location常用的匹配规则2.4、location优先级排列说明2.5、location示例2.6、location优先级总结2.7、实例2.7.1、location/{}与location/{}2.7.2、location/index.html{…

数字花园的指南针:微信小程序排名的提升之道

微信小程序&#xff0c;是一片数字花园&#xff0c;其中各种各样的小程序竞相绽放&#xff0c;散发出各自独特的芬芳。在这个花园中&#xff0c;排名优化就像是精心照料花朵的园丁&#xff0c;让我们一同走进这个数字花园&#xff0c;探寻如何提升微信小程序的排名优化&#xf…

积木报表 JimuReport v1.6.2-GA版本发布—高危SQL漏洞安全加固版本

项目介绍 一款免费的数据可视化报表&#xff0c;含报表和大屏设计&#xff0c;像搭建积木一样在线设计报表&#xff01;功能涵盖&#xff0c;数据报表、打印设计、图表报表、大屏设计等&#xff01; Web 版报表设计器&#xff0c;类似于excel操作风格&#xff0c;通过拖拽完成报…

DES和3DES等常见加解密的关键要素---安全行业基础篇3

DES和3DES DES和3DES是对称加密算法&#xff0c;其加密和解密的关键要素包括&#xff1a; 密钥&#xff1a;DES和3DES使用相同长度的密钥进行加密和解密。DES使用56位密钥&#xff0c;而3DES可以使用112位或168位密钥。密钥是保护数据安全的关键&#xff0c;必须保持机密并只…

RHCSA Linux环境搭建

目录 一、安装Linux操作系统 二、创建虚拟机 1、成功激活后&#xff0c;开始“创建新的虚拟机” 新建虚拟机 2、自定义--根据我们的需求来创建 3、默认即可 4、选择稍后安装操作系统&#xff08;可自定义设置某些选项&#xff09; 5、选择Linux操作系统&#xff0c;版本…

【数据结构面试题】栈与队列的相互实现

目录 1.队列实现栈 1.1创建栈 1.2判断是否为空 1.3入栈 1.4出栈 1.5获取栈顶元素 1.6完整代码 2. 用栈实现队列 2.1创建队列 2.2判断是否为空 2.3入队列 2.4出队列 2.5获取队头元素 2.6完整代码 1.队列实现栈 用队列实现栈https://leetcode.cn/problems/impleme…

【C++11】{}初始化、std::initializer_list、decltype、STL新增容器

文章目录 1. C11简介2. 统一的列表初始化2.1 &#xff5b;&#xff5d;初始化2.2 std::initializer_list 3. 声明3.1 auto3.2 decltype 4. nullptr5. 范围for循环6. 智能指针7. C11STL中的一些变化8. 演示代码 1. C11简介 在2003年C标准委员会曾经提交了一份技术勘误表(简称TC1…

windows环境下node安装教程(超详细)

安装node.js 1、下载node: 下载地址&#xff1a;下载 | Node.js 中文网 node.js的zip包安装时是直接解压缩后就可以了, node.js的msi包是傻瓜式一路next就可以了 选择一中方式就可以 2、解压后的目录,或者mis安装后的目录如下: 3、安装完后&#xff0c;可以在命令行中输入…

vscode调试程序设置

主要设置和json内容如下&#xff1a; cpp_properties.json内容&#xff1a; {"configurations": [ //C intellisense插件需要这个文件&#xff0c;主要是用于函数变量等符号的只能解析{"name": "Win32","includePath": ["${work…

Windows云服务器 PHP搭建网站外网无法访问的问题

前言&#xff1a;本人在华为云上租了一台windows的云主机&#xff0c;可以远程访问桌面的那种&#xff0c;然后想搭个网站&#xff0c;最开始想到的是IIS&#xff0c;测试了下用html的文件&#xff0c;没有问题。但是&#xff0c;php文件却不能用&#xff0c;因为少了PHP环境。…

微信小程序中识别html标签的方法

rich-text组件 在微信小程序中有一个组件rich-text可以识别文本节点或是元素节点 具体入下: //需要识别的数据放在data中,然后放在nodes属性中即可 <rich-text nodes"{{data}}"></rich-text>详情可以参考官方文档:https://developers.weixin.qq.com/mi…

穷举深搜暴搜回溯剪枝(4)

一)单词搜索: 直接在矩阵中依次找到特定字符串 79. 单词搜索 - 力扣&#xff08;LeetCode&#xff09; 画出决策树&#xff0c;只需要做一个深度优先遍历: 1)设计dfs函数:只需要关心每一层在做什么即可&#xff0c;从这个节点开始&#xff0c;开始去尝试匹配字符串的下一个字符…

海光异构智能计算专区上线飞桨AI Studio!

近日&#xff0c;海光异构智能计算专区正式上线飞桨AI Studio(星河社区)。专区内容来自官方发布和社区贡献&#xff0c;包含双方产品合作成果、行业解决方案、优秀项目展示等&#xff0c;致力于帮助开发者快速了解体验飞桨、为海光异构智能计算软硬协同优化带来更高性能提升。 …

Kafka3.0.0版本——消费者(消费者组原理)

目录 一、消费者组原理1.1、消费者组概述1.2、消费者组图解示例1.3、消费者组注意事项 一、消费者组原理 1.1、消费者组概述 Consumer Group&#xff08;CG&#xff09;&#xff1a;消费者组&#xff0c;由多个consumer组成。形成一个消费者组的条件&#xff0c;是所有消费者…

C#事件event

事件模型的5个组成部分 事件拥有者&#xff08;event source&#xff09;&#xff08;类对象&#xff09;&#xff08;有些书将其称为事件发布者&#xff09; 事件成员&#xff08;event&#xff09;&#xff08;事件拥有者的成员&#xff09;&#xff08;事件成员就是事件本身…

用python实现基本数据结构【04/4】

说明 如果需要用到这些知识却没有掌握&#xff0c;则会让人感到沮丧&#xff0c;也可能导致面试被拒。无论是花几天时间“突击”&#xff0c;还是利用零碎的时间持续学习&#xff0c;在数据结构上下点功夫都是值得的。那么Python 中有哪些数据结构呢&#xff1f;列表、字典、集…

2023高教社杯数学建模A题思路分析 - 定日镜场的优化设计

# 1 赛题 A 题 定日镜场的优化设计 构建以新能源为主体的新型电力系统&#xff0c; 是我国实现“碳达峰”“碳中和”目标的一项重要 措施。塔式太阳能光热发电是一种低碳环保的新型清洁能源技术[1]。 定日镜是塔式太阳能光热发电站(以下简称塔式电站)收集太阳能的基本组件&…

FastViT实战:使用FastViT实现图像分类任务(一)

文章目录 摘要安装包安装timm安装 grad-cam安装mmcv 数据增强Cutout和MixupEMA项目结构计算mean和std生成数据集补充一个知识点&#xff1a;torch.jit两种保存方式 摘要 论文翻译&#xff1a;https://wanghao.blog.csdn.net/article/details/132407722?spm1001.2014.3001.550…

mysql leetcode打题记录

文章目录 完成度基本语法高级语法连接日期 函数编写函数聚合函数 因为上过的数据库课实在太水了&#xff0c;所以打算先在菜鸟教程/CSDN/leetcode先学一下基本语法&#xff0c;然后去做Stanford数据库原理的课程CS145。 小目标&#xff1a;把leetcode上不用钱的mysql的题先做一…