零基础教程:使用yolov8训练无人机VisDrone数据集

1.准备数据集

1.先给出VisDrone2019数据集的下载地址:

链接:https://pan.baidu.com/s/1e2Q0NgNT-H-Acb2H0Cx8sg 
提取码:31dl

2.将数据集VisDrone放在datasets目录下面

2.数据集转换程序

1.在根目录下面新建一个.py文件,取名叫做visdrone2yolov

2.复制以下代码到这个visdrone2yolov.py文件里面

import os
from pathlib import Pathdef visdrone2yolo(dir):from PIL import Imagefrom tqdm import tqdmdef convert_box(size, box):# Convert VisDrone box to YOLO xywh boxdw = 1. / size[0]dh = 1. / size[1]return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh(dir / 'labels').mkdir(parents=True, exist_ok=True)  # make labels directorypbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')for f in pbar:img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).sizelines = []with open(f, 'r') as file:  # read annotation.txtfor row in [x.split(',') for x in file.read().strip().splitlines()]:if row[4] == '0':  # VisDrone 'ignored regions' class 0continuecls = int(row[5]) - 1  # 类别号-1box = convert_box(img_size, tuple(map(int, row[:4])))lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:fl.writelines(lines)  # write label.txt
dir = Path('datasets/VisDrone')  # datasets文件夹下Visdrone2019文件夹目录
# Convert
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':visdrone2yolo(dir / d)  # convert VisDrone annotations to YOLO labels

3.代码中可能需要修改的地方

将dir的值换成VisDrone数据集的相对路径

然后运行这个程序。

4.数据集转换完毕

转换之后的数据集结构如下:

3.准备配置(yaml)文件

1.复制VisDrone到同级文件夹,取名叫myVisDrone.yaml

2.配置文件的具体信息如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
# Example usage: yolo train data=VisDrone.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── VisDrone  ← downloads here (2.3 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VisDrone  # dataset root dir
train: VisDrone2019-DET-train/images  # train images (relative to 'path')  6471 images
val: VisDrone2019-DET-val/images  # val images (relative to 'path')  548 images
test: VisDrone2019-DET-test-dev/images  # test images (optional)  1610 images# Classes
names:0: pedestrian1: people2: bicycle3: car4: van5: truck6: tricycle7: awning-tricycle8: bus9: motor

4.开始训练

1.使用yolov8s.pt进行训练

1.复制如下代码打开Terminal粘贴之后开始训练

yolo train model=yolov8s.pt data=ultralytics/cfg/datasets/myVisDrone.yaml batch=4 epochs=100 lr0=0.01

2.训练过程中遇到如下报错:OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

可能是因为进程占用的原因,重启电脑之后解决,顺利训练。

开始训练

3.网络未改进之前使用yolov8s.pt训练的效果

尝试了一下,不使用预训练权重开始训练,发现还是会默认使用yolov8n.pt

yolov8s训练最好的效果(所有标签) :map 0.412

2.使用yolov8l.pt进行训练

yolo train model=yolov8l.pt data=ultralytics/cfg/datasets/myVisDrone.yaml batch=4 epochs=100 lr0=0.01

训练效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/75839.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用POI实现操作Excel文件。

1、添加依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>4.1.2</version></dependency><dependency><groupId>org.apache.poi</groupId><artifactId>poi-o…

[keil] uv编译分析

假设Keil安装路径: C:\Keil_v5\ 假设工程在 d:\HELLO , 工程Targets名:Simulator [在Manage Project Items中可修改] 如下指令为:Build(F7) C:\Keil_v5\UV4\UV4.exe -b d:\HELLO\Hello.uvproj -j0 -t Simulator -o d:\HELLO\uv4.log 如下指令为:Rebuild(CtrlAltF7) C:\Kei…

探究SpringWeb对于请求的处理过程

探究目的 在路径归一化被提出后&#xff0c;越来越多的未授权漏洞被爆出&#xff0c;而这些未授权多半跟spring自身对路由分发的处理机制有关。今天就来探究一下到底spring处理了什么导致了才导致鉴权被绕过这样严重的问题。 DispatcherServlet介绍 首先在分析spring对请求处…

[刷题记录]牛客面试笔刷TOP101

牛客笔试算法必刷TOP101系列,每日更新中~(主要是记录自己的刷题,所以描述的可能不是很清楚 但如果刚好能帮助到你就更好了) 后续后头复习的时候,记得是看正解啊,别对着错的例子傻傻看了... 目录 1.合并有序链表2023.9.3 2.链表是否有环2023.9.4 3.判断链表中环的入口点 …

一分钟图情论文:《原始的布拉德福定律》

天津大学图书馆的研究馆员范铮先生&#xff0c;在《图书情报工作》第一期中发表了题为《原始的布拉德福定律》的文章&#xff0c;详细介绍了布拉德福定律的历史背景、调查统计数据、文献曲线以及理论推导等关键内容。这篇文章让我们能够深入了解布拉德福定律的本质和原始构想。…

概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式

目录 1. 背景2. 全概率公式3. 贝叶斯公式 1. 背景 下图是本文的背景内容&#xff0c;小B休闲时间有80%的概率玩手机游戏&#xff0c;有20%的概率玩电脑游戏。这两个游戏都有抽卡环节&#xff0c;其中手游抽到金卡的概率为5%&#xff0c;端游抽到金卡的概率为15%。已知小B这天抽…

Windows环境下Springboot3+Graalvm+Idea 打包成原生镜像 踩坑

https://github.com/oracle/graal/https://github.com/graalvm/graalvm-ce-builds/releases/对应关系graalvm-ce-java17-windows-amd64-X.X.X.zipnative-image-installable-svm-java17-windows-amd64-X.X.X.jar本人使用:graalvm-ce-java17-windows-amd64-23.0.1.zipnative-imag…

蓝桥杯官网练习题(纸牌三角形)

题目描述 本题为填空题&#xff0c;只需要算出结果后&#xff0c;在代码中使用输出语句将所填结果输出即可。 A,2,3,4,5,6,7,8,9 共 99 张纸牌排成一个正三角形&#xff08;A 按 1 计算&#xff09;。要求每个边的和相等。 下图就是一种排法。 这样的排法可能会有很多。 如果…

修改Docker镜像默认下载地址

1、安装完docker desktop后&#xff0c;先不要打开 2、新建目录 D:\ProgramData\Docker 3、在C:\Users\你的用户名\AppData\Local下&#xff0c;打开cmd或者powershell执行以下命令&#xff0c;命令语法略有不同。 powershell命令&#xff1a; cmd /c mklink /J Docker D:\Pro…

1-5 AUTOSAR数据交换文件ARXML

目录 一、Arxml文件 二、各类ARXML文件 一、Arxml文件 arxml文件是AUTOSAR&#xff08;Automotive Open System Architecture&#xff09;标准定义的XML文件&#xff0c;用于描述汽车电子系统中的软件组件、通信接口和参数配置等信息。 arxml文件的主要作用是在AUTOSAR架构下…

golang教程 beego框架笔记一

安装beego 安装bee工具 beego文档 # windos 推荐使用 go install github.com/beego/bee/v2master go get -u github.com/beego/bee/v2masterwindows使用安装bee工具时碰到的问题&#xff1b; 环境配置都没有问题&#xff0c;但是执行官网的命令&#xff1a;go get -u github…

打造高效的私密论坛网站:Cpolar内网穿透+HadSky轻量级搭建指南

文章目录 前言1. 网站搭建1.1 网页下载和安装1.2 网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3 Cpolar稳定隧道&#xff08;本地设置&#xff09;2.4 公网访问测试 总结 前言 经过多年的基础…

大数据和数据要素有什么关系?

大数据与数据要素之间存在密切的关系。大数据是指海量、多样化、高速生成的数据&#xff0c;而数据要素是指构成数据的基本元素或属性。数据要素包括但不限于数据的类型、结构、格式、单位、精度等。 大数据的产生和应用离不开数据要素的支持。数据要素确定了数据的基本特征和…

【网络基础】——HTTPS

目录 HTTPS背景知识 HTTPS是什么&#xff1f; 加密解密 为什么要加密 常见的加密方式 对称加密 非对称加密 数据摘要&&数据指纹 数字签名 HTTPS工作过程探究 方案1&#xff1a;只使用对称加密 方案2&#xff1a;只使用非对称加密 方案3&#xff1a;双方…

conda和Python的虚拟环境如何结合使用,以及二者之间到底有什么区别?

问题描述 今天在复现streamlit的代码时&#xff08;参考Streamlit 讲解专栏&#xff08;一&#xff09;&#xff1a;安装以及初步应用&#xff09;&#xff0c;根据这篇博文指导&#xff0c;要先用以下指令创建一个虚拟环境&#xff1a; # 创建虚拟环境&#xff08;使用venv&a…

【python】读取.dat格式文件

import binascii# 打开二进制文件以只读二进制模式 with open(EXCEL/文件.dat, rb) as file:binary_data file.read()print(binary_data)# 将二进制数据转换为十六进制字符串 hex_data binascii.hexlify(binary_data).decode(utf-8) # binary_data 现在包含了文件的二进制内容…

git标签基础

打标签:git可以给仓库历史中某个提交打上标签,以示重要,比较有代表人们会使用这个功能来标记发布结点(V1.0,V2.0) 列出本地标签: git tag --list git tag -l "V1.85*" 列出远端仓库的中所有标签 git ls-remote --tags给标签添加一些描述信息 git tag -a v1.3 -m …

热释电矢量传感器设计

1 概述 使用4个热释电传感器组成一个2X2的矩阵。通过曲线的相位差、 峰峰值等特征量来计算相关信息。本文使用STM32单片机设计、制作了热释电传感器矩阵&#xff1b;使用C#.NET设计了上位机软件。为以上研究做了试验平台。 2 硬件电路设计 2.1 热释电传感器介绍 热释电红外…

c++异步框架workflow分析

简述 workflow项目地址 &#xff1a; https://github.com/sogou/workflow workflow是搜狗开源的一个开发框架。可以满足绝大多数日常服务器开发&#xff0c;性能优异&#xff0c;给上层业务提供了易于开发的接口&#xff0c;却只用了少量的代码&#xff0c;举重若轻&#xff…

Fastjson_1.2.24_unserialize_rce漏洞复现

fastjson_1.2.24_unserialize_rce 说明内容漏洞编号CNVD-2017-02833漏洞名称FastJson < 1.2.24 远程代码执行漏洞评级高危影响范围1.2.24漏洞描述通过parseObject/parse将传入的字符串反序列化为Java对象时由于没有进行合理检查修复方案升级组件&#xff0c;打补丁&#xf…