基于yolov2深度学习网络的人脸检测matlab仿真,图像来自UMass数据集

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 网络架构与特征提取

4.2 输出表示

4.3损失函数设计

4.4预测阶段

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

 load yolov2.mat% 加载训练好的目标检测器
img_size= [224,224];
imgPath = 'test/';        % 图像库路径
imgDir  = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt     = 0;
for i = 1:8          % 遍历结构体就可以一一处理图片了iif mod(i,1)==0figureendcnt     = cnt+1;subplot(1,1,cnt); img = imread([imgPath imgDir(i).name]); %读取每张图片 I               = imresize(img,img_size(1:2));[bboxes,scores] = detect(detector,I,'Threshold',0.15);if ~isempty(bboxes) % 如果检测到目标I = insertObjectAnnotation(I,'rectangle',bboxes,scores,LineWidth=2);% 在图像上绘制检测结果endsubplot(1,1,cnt); imshow(I, []);  % 显示带有检测结果的图像pause(0.01);% 等待一小段时间,使图像显示更流畅if cnt==1cnt=0;end
end
113

4.算法理论概述

        YOLOv2是由Joseph Redmon等人在2016年提出的实时目标检测算法,其核心理念是在单个神经网络中一次性完成对整幅图像的预测。对于人脸检测任务,YOLOv2通过端到端的学习,能够在整个图像上直接预测出人脸的位置和大小。

4.1 网络架构与特征提取

       YOLOv2基于Darknet-19卷积神经网络进行特征提取,该网络包含19层卷积操作,用于从输入图像中提取丰富的特征信息。每个卷积层后可能跟随批量归一化层(Batch Normalization)、Leaky ReLU激活函数等组件以提升网络性能。

4.2 输出表示

        YOLOv2将图像划分为S×S 的网格(例如7×77×7)。对于每个网格单元,网络预测多个边界框(BoundingBox, BBox),每个BBox由以下五部分组成:

其中,

  • x,y 是相对于网格单元左上角的预测框中心的偏移量。
  • ℎw,h 是预测框的宽度和高度(相对于整幅图像的比例)。
  • c 是置信度得分,表示预测框内包含人脸的概率以及预测框与真实框的IOU(Intersection over Union)。

此外,对于每一个预测框,还会预测一个额外的变量集合,代表人脸类别的条件概率:

即在给定框内存在目标的情况下,是人脸的概率。

4.3损失函数设计

YOLOv2使用多任务损失函数,包括定位误差、置信度误差和分类误差三部分:

定位误差:采用平方误差来计算预测框位置与实际框位置之间的差距。

置信度误差:对于每个预测框,计算的是包含物体且预测框与实际框重合程度(IOU)较高的置信度损失,未包含物体的预测框则计算背景的置信度损失。

其中,Iij​ 是指示符函数,当第 i 个网格的第 j 个框包含物体时为1,否则为0;Ci​ 和 C^i​ 分别是预测置信度和实际置信度;δ 是一个小阈值。

分类误差:仅针对那些包含物体的预测框计算交叉熵损失。

4.4预测阶段

        在推理阶段,首先根据阈值筛选掉置信度较低的预测框,并对剩余框进行非极大抑制(Non-Maximum Suppression, NMS)处理,去除冗余预测,最终得到图像中的人脸检测结果。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/757555.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

爱注讲台三尺案不辞长作“育花”人

—记邵阳市优秀班主任、新宁县优秀教师周芳平 教育是人与人心灵上最美妙的接触,只要用心体察,用情关注,每一位学生都会走向金光大道。 ---题记 “亲爱的妈妈,祝您节日快乐!”2024年3月8日,一条从深圳华为…

28-3 文件上传漏洞 -白盒审计绕过

环境准备:构建完善的安全渗透测试环境:推荐工具、资源和下载链接_渗透测试靶机下载-CSDN博客 一、upload-labs 靶场的第7关 先进行代码审计 $is_upload = false; $msg = null; if (isset($_POST[submit])) {if (file_exists($UPLOAD_ADDR)) {$deny_ext = array(".php&…

Spring Boot:筑基

Spring Boot 前言概述使用 Intellij idea 快速创建 Spring Boot 项目注意事项 前言 在学习 Spring 、SpringMVC 、MyBatis 和 JPA 框架的过程中,了解到 SSM 框架为 Java Web 开发提供了强大的后端支持,JPA 框架则简化了数据库的操作。然而,S…

Cesium:按行列绘制3DTiles的等分线

作者:CSDN @ _乐多_ 本文将介绍如何使用 Cesium 引擎根据模型的中心坐标,半轴信息,绘制 3DTiles 对象的外包盒等分线。 外包盒是一个定向包围盒(Oriented Bounding Box),它由一个中心点(center)和一个包含半轴(halfAxes)组成。半轴由一个3x3的矩阵表示,这个矩阵是…

算法第三十一天-区域和检索【数组不可变】

区域和检索-数组不可变 题目要求 解题思路 为方便描述,把 n u m s nums nums 记作 a a a。 对于数组 a a a,定义它的前缀和 s [ 0 ] 0 s [ 1 ] a [ 0 ] s [ 2 ] a [ 0 ] a [ 1 ] ⋮ s [ i ] a [ 0 ] a [ 1 ] ⋯ a [ i − 1 ] ∑ j 0 i −…

x86 32 64 Arm这些听过但不懂,都是什么?是架构还是系统?一文梳理

x86 听过吗?64位操作系统知道吧 和x86什么关系32和64都是什么东西?曾经的我也一头雾水,今天我才来整理一下,惭愧惭愧!今天带着沉重的心情来梳理一下学习内容吧 如果你很熟悉很了解计算机的话,应该知道&…

深度分析:社科赛斯——穿越市场周期二十二年的考研机构

近日,一份由有关部门发布的统计数据引发了广泛关注:在中国,中小企业的平均寿命仅有3.7年,而小微企业更是不到3年。这一数字凸显了中小企业所面临的挑战与困境。然而,在这个充满风险与变化的商业环境中,社科…

中霖教育:二级建造师证书好考吗?

在建筑行业,二级建造师资格认证相较于一级建造师资格,难度会低一些。考试科目共有三科,考生需要在连续两个年度内通过所有科目的考试才为通过。 对于具备建筑相关基础和实践经验的考生来说,二级建造师的考试难度会低一些。根据往…

30天拿下Rust之错误处理

概述 在软件开发领域,对错误的妥善处理是保证程序稳定性和健壮性的重要环节。Rust作为一种系统级编程语言,以其对内存安全和所有权的独特设计而著称,其错误处理机制同样体现了Rust的严谨与实用。在Rust中,错误处理通常分为两大类&…

KUKA机器人自动回原点程序

一、创建全局变量点 创建两个全局变量分别用于储存机器人的笛卡尔姿态与关节角姿态。 打开System文件夹中的config文件创建全局变量的点位。 在USER GROBALS用户自定义变量Userdefined variables下创建一个E6POS类型的点位,一个E6AXIS类型的点位。 二、创建回原点…

基于SpringBoot+Vue交通管理在线服务系统的开发(源码+部署说明+演示视频+源码介绍)

您好,我是码农飞哥(wei158556),感谢您阅读本文,欢迎一键三连哦。💪🏻 1. Python基础专栏,基础知识一网打尽,9.9元买不了吃亏,买不了上当。 Python从入门到精通…

React状态管理Mobx

1 https://zh.mobx.js.org/README.html 2 https://juejin.cn/post/7046710251382374413 3 https://cn.mobx.js.org/refguide/observable.html ​​mobx入门基础教程-慕课网​​ ​​Mobx学习 - 掘金​​ 十分钟入门 MobX & React ​​十分钟入门 MobX & React​​…

警惕!On Hold被踢,2本1区,5本Springer旗下,共8本SCI/SSCI被剔除!

毕业推荐 SSCI(ABS一星) • 社科类,3.0-4.0,JCR2区,中科院3区 • 13天录用,28天见刊,13天检索 SCIE: • 计算机类,6.5-7.0,JCR1区,中科院2区…

农业气象站在农业生产中的应用—气象科普

农业气象站在农业生产中发挥着至关重要的作用。它能够有效监测和记录农田环境中的各类气象要素,为农民提供科学、准确的气象数据,帮助他们更好地掌握天气变化规律,从而合理安排农业生产活动。 首先,农业气象站能够实时提供温度、…

使用 Clojure 进行 OpenCV 开发简介

返回:OpenCV系列文章目录(持续更新中......) 上一篇:如何将OpenCV Java 与Eclipse结合使用 下一篇: OpenCV4.9.0在Android 开发简介 ​警告 本教程可以包含过时的信息。 从 OpenCV 2.4.4 开始,OpenCV 支持…

挑战设计极限!电路仿真软件成功案例大揭秘,助您圆梦创新之路

在电子设计领域,电路仿真软件扮演着至关重要的角色。它们不仅能够帮助工程师们模拟和分析电路的性能,还能够加速设计过程,降低成本,提高产品的质量和可靠性。今天,让我们一起挑战设计极限,揭秘电路仿真软件…

Java基础---反射

什么是反射? 反射允许对成员变量,成员方法和构造方法的信息进行编程访问。 这么说可能比较抽象,可以简单理解为:反射就是一个人,可以把类里面的成员变量,成员方法,构造方法都获取出来。 并且可…

Springcloud智慧工地APP云综合平台源码 SaaS服务

目录 智慧工地功能介绍 一、项目人员 二、视频监控 三、危大工程 四、绿色施工 五、安全隐患 具体功能介绍: 1.劳务管理: 2.施工安全管理: 3.视频监控管理: 4.机械安全管理: 5.危大工程监管: …

ctf_show笔记篇(web入门---反序列化)

目录 反序列化 254:无用,是让熟悉序列化这个东西的 255:直接使$isViptrue 256:还是使用变量覆盖 257:开始使用魔法函数 258:将序列化最前面的过滤了,使用绕过 259: 这一题需要看writeup才…

windows10 WSL启动Ubuntu虚拟机,安装DolphinScheduler

文章目录 1. 启动WSL与虚拟机2. 安装Docker与DolphinScheduler容器 1. 启动WSL与虚拟机 使用管理员权限运行命令: Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux重启后即可创建虚拟机 在Microsoft Store中搜索Ubuntu&…