分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测

分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测

目录

    • 分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

基于局部费歇尔判别数据降维的LFDA-SVM的二分类及多分类建模做多特征输入单输出的二分类及多分类模型。
程序内注释详细,直接替换数据就可以用。
程序语言为matlab。
程序可出分类效果图,降维展示图,混淆矩阵图。
想要的私聊我吧。
PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。

程序设计

  • 完整源码和数据下载私信博主回复** Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测**。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
clc;
clear;
warning off
close all
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  添加路径
addpath("Toolbox\")
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  读取数据
res = xlsread('数据集.xlsx');
%%  性能评价
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
%-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  混淆矩阵
if flag_conusion == 1figurecm = confusionchart(T_train, T_sim1);cm.Title = 'Confusion Matrix for Train Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';figurecm = confusionchart(T_test, T_sim2);cm.Title = 'Confusion Matrix for Test Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';
end

参考资料

[1] https://download.csdn.net/download/kjm13182345320/87899283?spm=1001.2014.3001.5503
[2] https://download.csdn.net/download/kjm13182345320/87899230?spm=1001.2014.3001.5503

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/75720.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

upload-labs 16/17关

16 将gif文件和包含一句话木马的php文件放在同一目录下,用cmd的copy命令将php文件整合进文件中。 可以看到最后一行包含了注入代码 将b1文件上传到服务器后,发现并未能正常执行代码,将上传后的文件下载到本地,打开后发现最后的代…

Swift学习内容精选(一)

Swift 可选(Optionals)类型 Swift 的可选(Optional)类型,用于处理值缺失的情况。可选表示"那儿有一个值,并且它等于 x "或者"那儿没有值"。 Swfit语言定义后缀?作为命名类型Optional的简写&…

二进制链表转整数

给你一个单链表的引用结点 head。链表中每个结点的值不是 0 就是 1。已知此链表是一个整数数字的二进制表示形式。 请你返回该链表所表示数字的 十进制值 。 示例 1: 输入:head [1,0,1] 输出:5 解释:二进制数 (101) 转化为十进…

OpenCV(二十六):边缘检测(二)

目录 1.Laplacian算子边缘检测 原理: Laplacian边缘检测函数Laplacian() 示例代码: 2.Canny算子边缘检测 原理: Canny算法函数Canny() 示例代码: 1.Laplacian算子边缘检测 原理: Laplacian算子的原理基于图像…

【Git-Exception】Git报错:fatal: unable to auto-detect email address

报错信息: *** Please tell me who you are. Run git config --global user.email “youexample.com” git config –global user.name “Your Name” to set your account’s default identity. Omit --global to set the identity only in this repository. fatal…

Prometheus+Grafana可视化监控【主机状态】

文章目录 一、介绍二、安装Prometheus三、安装Grafana四、Pronetheus和Grafana相关联五、监控服务器状态六、常见问题 一、介绍 Prometheus是一个开源的系统监控和报警系统,现在已经加入到CNCF基金会,成为继k8s之后第二个在CNCF托管的项目,在…

【Leetcode-面试经典150题-day22】

目录 97. 交错字符串 97. 交错字符串 题意: 给定三个字符串 s1、s2、s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。 两个字符串 s 和 t 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串: s s1 s2 …

【Java基础篇 | 面向对象】—— 继承

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【JavaSE_primary】 本专栏旨在分享学习JavaSE的一点学习心得,欢迎大家在评论区讨论💌 继承允许一个类继承另一个…

TCP协议

目录 一、TCP协议段格式 二、TCP原理 2.1 确认应答机制 2.2 超时重传机制 2.3 连接管理机制(重点) 2.4 滑动窗口 2.5 流量控制 2.6 拥塞控制 2.7 延迟应答 2.8 捎带应答 2.9 面向字节流(粘包问题) 2.10 TCP异常情况(心…

Python网络爬虫库:轻松提取网页数据的利器

网络爬虫是一种自动化程序,它可以通过访问网页并提取所需的数据。Python是一种流行的编程语言,拥有许多强大的网络爬虫库。在本文中,我们将介绍几个常用的Python网络爬虫库以及它们的使用。 Requests库 Requests是一个简单而优雅的HTTP库&…

北京互联网营销服务商浩希数字科技申请1350万美元纳斯达克IPO上市

来源:猛兽财经 作者:猛兽财经 猛兽财经获悉,总部位于北京的互联网营销服务商浩希数字科技(Haoxi Health Technology Limited )近期已向美国证券交易委员会(SEC)提交招股书,申请在纳斯…

软件测试/测试开发丨Web自动化 PageObject设计模式

点此获取更多相关资料 本文为霍格沃兹测试开发学社学员学习笔记分享 原文链接:https://ceshiren.com/t/topic/27167 一、page object 模式简介 马丁福勒个人博客 selenium 官网 1.1、传统 UI 自动化的问题 无法适应 UI 频繁变化无法清晰表达业务用例场景大量的样…

Goland2023版新UI的debug模式调试框按钮功能说明

一、背景 Jetbrains家的IDE的UI基本都是一样的,debug模式的调试框按钮排列也是一致的,但是在我使用Goland2023版的新UI时,发现调试框的按钮变化还是很大的,有一些按钮被收起来了,如果看之前的博客会发现有一些文中的旧…

stm32f1xx单片机拦截中断源代码

这个是实现后的效果,可以看到已经没有中断的效果了 这个是拦截前的效果可以看到电平是在变化的 实现原理非常简单:一句话搞定: if(TIM2->CNTTIM2->ARR-5)TIM2->CNT-5; 以下是完整的代码:是用来补充说明和筹字数的 /* …

图解 LeetCode 算法汇总——回溯

本文首发公众号:小码A梦 回溯算法是一种常见的算法,常见用于解决排列组合、排列问题、搜索问题等算法,在一个搜索空间中寻找所有的可能的解。通过向分支不断尝试获取所有的解,然后找到合适的解,找完一个分支后再往回搜…

GNSS融合策略

文章目录 一、背景二、松耦合融合策略1. 信息有效性判断2. 坐标系对齐3. 观测方程a.杆臂补偿b.速度融合c.位置融合1) 置信度设置 d. 航向yaw融合 4.观测性分析1)状态表示在VIO坐标系下的观测性分析2)状态表示在GPS ENU坐标系下的观测性分析 三、紧耦合融…

Bytebase 和 GitLab 签署 Technology Partner 技术合作伙伴协议

Bytebase 和 GitLab 签署技术合作伙伴协议,携手为开发者提供流畅的数据库协作开发和管理体验。 GitLab 是世界领先的开源 AI 驱动 DevSecOps 平台,旨在帮助开发者团队更好协作、更高效交付软件。Bytebase 是一款为 DevOps 团队准备的数据库 CI/CD 工具&a…

drone的简单使用

(一)简介 Drone 是一个基于Docker容器技术的可扩展的持续集成引擎,用于自动化测试、构建、发布。每个构建都在一个临时的Docker容器中执行,使开发人员能够完全控制其构建环境并保证隔离。开发者只需在项目中包含 .drone.yml文件&…

数据结构和算法(2):向量

抽象数据类型 数组到向量 C/C 中,数组A[]中的元素与[0,n)内的编号一一对应,A[0],A[1],...,A[n-1];反之,每个元素均由(非负)编号唯一指代,并可直接访问A[i] 的物理地址 Ai s,s 为单…

docker系列(2) - 常用命令篇

文章目录 2. docker常用命令2.1 参数说明(tomcat案例)2.2 基本命令2.3 高级命令2.4 其他 2. docker常用命令 2.1 参数说明(tomcat案例) 注意如果分成多行,\后面不能有空格 # 拉取运行 docker run \ -d \ -p 8080:8080 \ --privilegedtrue \ --restartalways \ -m…