算法训练营day44|动态规划 part06:完全背包 (完全背包、 LeetCode518. 零钱兑换 II、377. 组合总和 Ⅳ )

文章目录

  • 完全背包
  • 518. 零钱兑换 II (求组合方法数)
    • 思路分析
    • 代码实现
    • 思考总结
  • 377. 组合总和 Ⅳ (求排列方法数)
    • 思路分析
    • 代码实现
    • 思考总结

完全背包

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
依然举这个例子:

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

每件商品都有无限个!
问背包能背的物品最大价值是多少?

01背包和完全背包唯一不同就是体现在遍历顺序上,
01背包的核心代码:

for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

**而完全背包的物品是可以添加多次的,所以要从小到大去遍历,**即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

dp状态图如下:
在这里插入图片描述
01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
完整代码:

// 先遍历物品,在遍历背包
void test_CompletePack() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;vector<int> dp(bagWeight + 1, 0);for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}
int main() {test_CompletePack();
}
// 先遍历背包,再遍历物品
void test_CompletePack() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;vector<int> dp(bagWeight + 1, 0);for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量for(int i = 0; i < weight.size(); i++) { // 遍历物品if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}
int main() {test_CompletePack();
}

518. 零钱兑换 II (求组合方法数)

题目链接🔥🔥
给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:
输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。

示例 3:
输入: amount = 10, coins = [10]
输出: 1

注意,你可以假设:
0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数

思路分析

本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!

注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?

例如示例一:

5 = 2 + 2 + 1

5 = 2 + 1 + 2

这是一种组合,都是 2 2 1。

如果问的是排列数,那么上面就是两种排列了。

组合不强调元素之间的顺序,排列强调元素之间的顺序。

  1. 确定dp数组以及下标的含义

dp[j]:凑成总金额j的货币组合数为dp[j]

  1. 确定递推公式

dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。

所以递推公式:dp[j] += dp[j - coins[i]];

这个递推公式在这篇494. 目标和中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];

  1. dp数组如何初始化

首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。

那么 dp[0] = 1 有没有含义,其实既可以说凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。

但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。

这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。

  1. 确定遍历顺序

本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?

完全背包的两个for循环的先后顺序都是可以的。但本题就不行了!

因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间明确要求没有顺序。两个for循环的先后顺序可就有说法了。

我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

代码如下:

for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量dp[j] += dp[j - coins[i]];}
}

假设:coins[0] = 1,coins[1] = 5。

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

for (int j = 0; j <= amount; j++) { // 遍历背包容量for (int i = 0; i < coins.size(); i++) { // 遍历物品if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];}
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

  1. 举例推导dp数组

输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:
在这里插入图片描述

代码实现

class Solution {
public:int change(int amount, vector<int>& coins) {vector<int> dp(amount+1,0);dp[0]=1;for(int i=0;i<coins.size();i++){for(int j=coins[i];j<=amount;j++){dp[j]+=dp[j-coins[i]];}}return dp[amount];}
};

思考总结

难点在于遍历顺序!

在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

和下一道题好好对比。


377. 组合总和 Ⅳ (求排列方法数)

题目链接🔥🔥
给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。

示例:
nums = [1, 2, 3]
target = 4
所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

请注意,顺序不同的序列被视作不同的组合。
因此输出为 7。

思路分析

元素相同顺序不同的组合算两个组合,其实就是求排列!
其本质是本题求的是排列总和,而且仅仅是求排列总和的个数,并不是把所有的排列都列出来。
如果本题要把排列都列出来的话,只能使用回溯算法爆搜。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[i]: 凑成目标正整数为i的排列个数为dp[i]

  1. 确定递推公式

在494. 目标和和518.零钱兑换II中我们已经讲过了,求装满背包有几种方法,递推公式一般都是dp[j] += dp[j - nums[i]];

本题也一样。

  1. dp数组如何初始化

因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。

至于dp[0] = 1 有没有意义呢?

其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。

至于非0下标的dp[i]应该初始为多少呢?

初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]。

  1. 确定遍历顺序

本题要求的是排列,那么这个for循环嵌套的顺序可以有说法了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!

所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。

  1. 举例来推导dp数组

我们再来用示例中的例子推导一下:
在这里插入图片描述

代码实现

class Solution {
public:int combinationSum4(vector<int>& nums, int target) {vector<int> dp(target+1,0);dp[0]=1;for(int j=0;j<=target;j++){for(int i=0;i<nums.size();i++){//C++测试用例有两个数相加超过int的数据,所以需要在if里加上dp[j] < INT_MAX - dp[j - nums[i]]。if(j>=nums[i]&&dp[j] < INT_MAX - dp[j - nums[i]]) dp[j]+=dp[j-nums[i]];              }}return dp[target];}
};

思考总结

求装满背包有几种方法,递归公式都是一样的,没有什么差别,但关键在于遍历顺序!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/75501.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LInux编译器gcc/g++】gcc使用方法和动静态库相关概念

目录 一.前言 二.源代码的翻译环境 三.gcc相关指令 四.动静态库 1.什么是库&#xff1f; 2.库的命名 3.库的链接方式 4.动静态链接的优缺点 5.小结 一.前言 在Windows系统上我们常用VisualStudio来进行C/C开发&#xff0c;VS并不是一款单一的软件&#xff0c;而是集成…

【C++模拟实现】list的模拟实现

【C模拟实现】list的模拟实现 目录 【C模拟实现】list的模拟实现list模拟实现的部分代码list模拟实现中的要点const_iterator的实现push_backoperator运算符重载iterator begin()函数 作者&#xff1a;爱写代码的刚子 时间&#xff1a;2023.9.3 前言&#xff1a;本篇博客关于li…

9月9日,每日信息差

今天是2023年9月9日&#xff0c;以下是为您准备的12条信息差 第一、前晨汽车动力电池项目落地厦门&#xff0c;第二十届中国国际投资贸易洽谈会于2023年9月8日在福建省厦门市开幕。会上&#xff0c;前晨汽车科技有限公司与福建省厦门市集美区进行了前晨汽车动力电池项目签约&a…

【刷题篇】贪心算法(一)

文章目录 分割平衡字符串买卖股票的最佳时机Ⅱ跳跃游戏钱币找零 分割平衡字符串 class Solution { public:int balancedStringSplit(string s) {int lens.size();int cnt0;int balance0;for(int i0;i<len;i){if(s[i]R){balance--;}else{balance;}if(balance0){cnt;}}return …

px、rpx、em以及rem的区别与用法

px、rpx、em、rem是用于网页开发中表示全屏宽度或元素尺寸的单位。 1. px&#xff08;像素&#xff09;&#xff1a;是最常见的单位&#xff0c;它表示屏幕上的实际像素点。在不同设备上&#xff0c;px 会根据屏幕的分辨率进行换算&#xff0c;因此在不同设备上显示效果可能会…

WPF CommunityToolkit.Mvvm Messenger通讯

文章目录 环境WeakReferenceMessenger方法介绍无回调订阅发送Token区分有回调订阅发送 环境 CommunityToolkit.Mvvm Messenger 十月的寒流: 如何使用 CommunityToolkit.Mvvm 中的 Messenger 来进行 ViewModel 之间的通信 WeakReferenceMessenger 我这里只讲简单的弱Messenger…

Spring云服务:如何将应用程序轻松迁移到云端

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

01-docker基础

为什么会有docker出现 docker之所以发展如此迅速&#xff0c;就是因为他给出了开发中应用的部署过程中的出现的环境变量、版本、配置问题等问题的标准解决方案——系统平滑移植&#xff0c;容器虚拟化技术。 因为环境配置相对麻烦&#xff0c;换一台机器就得重新来一次&#…

Android图形-Hardware Composer HAL

目录 一、引言 二、概览 三、实现HWC 3.1 为什么是HWC&#xff1f; 3.2 HWC的支持需求 3.3 HWC的实现思路 3.4 HWC的基元 3.5 HIDL接口 3.6 函数指针 3.7 图层和屏幕句柄 3.8 屏幕合成操作 3.9 多个屏幕 3.10 虚拟屏幕合成 3.10.1 模式 3.10.2 输出格式 3.11 同…

Qt 5.15编译(MinGW)及集成Crypto++ 8.8.0笔记

一、背景 为使用AES加密库&#xff08;AES/CBC加解密&#xff09;&#xff0c;选用Crypto 库&#xff08;官网&#xff09;。   最新Crypto C库依次为&#xff1a;8.8.0版本&#xff08;2023-6-25&#xff09;、8.7.0&#xff08;2022-8-7&#xff09;和8.6.0&#xff08;202…

jupylab pandas按条件批量处理xls数据

批量处理xls表数据 引入相关包 import pandas as pd import xlrd import numpy as np# 去掉jupyleb警告 import warnings warnings.filterwarnings("ignore")from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity…

如何利用 Selenium 对已打开的浏览器进行爬虫

大家好&#xff01; 在对某些网站进行爬虫时&#xff0c;如果该网站做了限制&#xff0c;必须完成登录才能展示数据&#xff0c;而且只能通过短信验证码才能登录 这时候&#xff0c;我们可以通过一个已经开启的浏览器完成登录&#xff0c;然后利用程序继续操作这个浏览器&…

【LeetCode-中等题】39. 组合总和

文章目录 题目方法一&#xff1a;递归回溯 题目 这题的nums数组里面不存在重复元素&#xff0c;所以也就无需做去重操作 但同一个元素可以被无限次取&#xff0c;说明每次递归中的for循环的开始位置就是自己 nums数组里面存在重复元素&#xff0c;去重版本&#xff1a; 方法一…

Git学习记录

Contest 一、工作区域二、操作命令2.1 创建仓库2.2 查看仓库状态2.3 从工作区向暂存区添加文件2.3.1 只添加一个文件2.3.2 添加全部文件 2.4 从暂存区向仓库区添加文件2.5 查询日志2.5.1 从当前版本开始查询2.5.2 查看所有日志 2.6 回滚2.6.1 从仓库回滚到工作区2.6.2 取消工作…

Redis 主从复制 + 哨兵模式 + Cluster 集群

redis群集 redis群集有三种模式&#xff1a; 分别是主从同步/复制、哨兵模式、Cluster&#xff0c;下面会讲解一下三种模式的工作方式&#xff0c;以及如何搭建cluster群集 主从复制&#xff1a; 主从复制是高可用Redis的基础&#xff0c;哨兵和集群都是在主从复制基础上实现…

剑指 Offer 04. 二维数组中的查找

题目描述 在一个 n * m 的二维数组中&#xff0c;每一行都按照从左到右 非递减 的顺序排序&#xff0c;每一列都按照从上到下 非递减 的顺序排序。请完成一个高效的函数&#xff0c;输入这样的一个二维数组和一个整数&#xff0c;判断数组中是否含有该整数。 解题思路 注意每…

c++中的list容器讲解

文章目录 1. list的介绍及使用1.1 list的介绍1.2 list的使用1.2.1 list的构造1.2.2 list iterator的使用1.2.3 list capacity1.2.4 list element access1.2.6 list的迭代器失效 2. list的模拟实现2.1 模拟实现list 3. list与vector的对比 1. list的介绍及使用 1.1 list的介绍 …

医疗知识图谱 neo4j

开源项目&#xff1a; https://github.com/liuhuanyong/QASystemOnMedicalKG 一.效果 二.需要安装&#xff1a; pip install pyahocorasick pip install py2neo 三.需要修改&#xff1a; 需要改的点&#xff1a; 1.改连接的方式 2.改读文件的方式 MedicalGraph 运行&am…

docker-compose安装Nacos2

文章目录 一. Mac1.1 数据库nacos_dev1.2 docker-compose.yaml1.3 部署1.4 卸载1.5 查看 二. Win102.1 docker-compose.yaml2.2 部署2.3 卸载 一. Mac 1.1 数据库nacos_dev sql文件地址 /** Copyright 1999-2018 Alibaba Group Holding Ltd.** Licensed under the Apache Li…

前端面试的话术集锦第 9 篇:高频考点(webpack性能优化)

这是记录前端面试的话术集锦第九篇博文——高频考点(webpack性能优化),我会不断更新该博文。❗❗❗ 在此章节中,我不会浪费篇幅给大家讲如何写配置文件。如果你想学习这方面的内容,那么完全可以去官网学习。在这部分的内容中,我们会聚焦于以下两个知识点,并且每一个知识…