设计原则、工厂、单例模式

什么是设计模式

简单来说,设计模式就是很多程序员经过相当长的一段时间的代码实践、踩坑所总结出来的一套解决方案,这个解决方案能让我们少写一些屎山代码,能让我们写出来的代码写出来更加优雅,更加可靠。所以设计模式的好处是显而易见的。
当然,设计模式不仅仅能够让我们写出更好的代码,他还有些好处,

  • 我们在读框架、中间件源码的时候,我们会设计模式,就能够更好的去理清源码的整个逻辑,读起来也会轻松不少。
  • 面试的时候,设计模式还是问的比较多的,所以呢,设计模式学得好,工作少不了。

七大设计原则

  • 单一职责原则 Single ResponsibilityPrinciple

一个类应该只有一个发生变化的原因,否则类应该被拆分;

用我们自己的话来说就是:一个类只负责一项职责、只做一件事情;也就是说要做到代码功能的原子性;比如说我们在
做项目的时候,用户模块里就只处理用户相关的业务,商品服务里就只处理商品相关的业务,这样他们就不会互相影响
了,就解耦开来了。

  • 开闭原则 Open Closed Principle

对扩展开放、对修改关闭

意思就是我们写代码的时候,尽量在已有的代码上做扩展,比如说新增模块,新增方法,而不是去修改别人已经写好的代码。 这个估计大家感受很深刻,写代码最痛苦的事情,就是在别人的代码上做迭代了。当然这个原则上是尽量要这样,实际工作中,如果你的需求只要在别人的代码上改动非常少的代码就能实现,那我们也可以不要遵守这个原则了。

  • 里氏替换原则 Liskov SubstitutionPrinciple

子类对象是可以替换程序中父类对象出现的任何地方,并且保证原来的程序逻辑不变以及运行正确

换句话说,就是子类可以扩展父类的功能,但不能去改变父类原有的功能。

  • 接口隔离原则 Interface Segregation Principle

写代码的时候,接口不要写得太臃肿了,我们需要把接口拆分得更小,更专用。

  • 依赖倒置原则 Dependency Inversion Principle

设计代码结构时,高层模块不应依赖低层模块,两者都应该依赖抽象,抽象不应依赖细节,细节应该依赖抽象。

  • KISS 原则 keep it simple and stupid

保持它的简单和愚蠢。

也就是说我们的代码尽量要写得简单,不要为了炫技来写很多花里胡哨的代码,比如说,一个代码只要几个if else就能解
决了,而且后期几乎不可能再去升级,那这种代码其实就没必要用什么设计模式去做了,这样倒是搞得代码更加复杂
了。所以,咱们写代码,尽量不要用同事不懂的技术来写代码,也不要去重复造轮子,尽量用目前市面上比较成熟的开
源库,也不要做过度优化,把一些简单的代码弄得花里胡哨的。

  • YAGNI 原则 you ain’t gonna need it

你不需要它。

就是不要去做一些过度设计,比如说公司只用得到MySQL,你为了以后能够支持海量数据,直接把hadoop那套体系搬过来了,各种技术都引入进来,那是完全没有必要的。

  • DRY 原则 don’t repeat your code

不要写重复的代码。

  • 迪米特法则 law of demeter

他的核心主旨就是一个对象应该对其他对象保持最少的了解,也就是多个类之间尽量不要直接去依赖,如果你非要依赖,那也只能依赖必要的接口。其实也就是为了减少类和类之间的耦合,每个类越独立越好。这个其实就是我们正常开发中用到的策略,直接依赖接口,而不是依赖实现类。

设计模式分类

  1. 创建型(5种;处理对象的创建过程;工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式)
  2. 结构型(7种;处理类或者对象的组合;适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模 式、享元模式)
  3. 行为型(11种;对类或对象怎样交互和怎样分配职责进行描述;策略模式、模板方法模式、观察者模式、迭代器模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式)

对应到我们的编码开发过程,其实是一个有先后顺序的递进过程,我们来看一下:

  1. 首先,我们要去实现某个功能,肯定会要创建对象是吧,所以像:单例、工厂、建造者、原型都属于怎样去很好的创建对象,主要目的在于将对象的创建与使用分离;
  2. 然后,对象创建好了之后,就应该去考虑对象之间关系,如何更好的继承、依赖、组合,那么就衍生了很多结构型的模式,比如:门面、适配器、代理、装饰、组合、享元这些;
  3. 最后,前面2步做完了,就到了具体实现,怎样更好的达到目的,使行为更加清晰、效率更高,就是行为型模型 要做的事情,比如:策略,责任链、迭代器等等;

工厂模式

工厂(Factory),顾名思义,创建对象实例的生产工厂,以前我们创建对象都是 new Xxx(),如果我们使用工厂模式 的话,就可以用它来替代 new 操作,创建实例(对象);所以当你理解了工厂模式后,以后去 new 对象时就可以考 虑还能使用工厂模式达到一样的目的;虽然这样做,可能需要多做一些工作,但会给你系统带来更大的可扩展性和尽 量少的修改量(主要是 降低耦合);

工厂模式分为 3 种,包括:简单工厂模式、工厂方法模式、抽象工厂模式,接下来,我们逐一来看;

  • 简单工厂模式

简单工厂模式不属于 GOF 的 23 种经典设计模式,严格来说它应该属于一种编程习惯,这个简单工厂模式只是工厂方法模式的一种特例,所以工厂模式实际上只有工厂方法模式和抽象工厂模式。

简单工厂核心逻辑其实就是这样,将一堆 if else 判断从业务代码中剥离出来,然后塞到一个工厂类中,通过这个工厂来生产出我们想要的产品。这样我们在业务中就不需要关心这种逻辑了,一切都由工厂给我提供,就像你去买一个手机一样,你根本不用关心这个手机是怎么通过流水线生产出来的,就像我们这个代码里,也不用去关心这个上传服务实例是怎么生成的。

  • 工厂方法模式

工厂方法,核心思想是:将对象的创建逻辑下沉到子类里面(创建多个子工厂来创建对象)。

这种方式如果再要增加第三方上传服务时,就不需要修改工厂类的代码了,每个第三方服务都会有一个工厂,这样就解决了简单工厂模式的缺点,不过要相应地增加工厂类;工厂方法模式是简单工厂模式的进一步抽象,运用了多态性、克服了简单工厂模式的缺点。

  • 优点:获取对象时只需要知道具体工厂的名称,就可以得到对应的对象,无须知道具体创建过程;在系统增加新的类 时只需要添加对应的具体工厂类,无须对原工厂进行任何修改,满足开闭原则;

  • 缺点:每增加一个类就要增加一个对应的具体工厂类,增加了系统的复杂度;

  • 抽象工厂模式

抽象工厂模式,直接通过案例分析:

  1. 定义了两个接口:ThirdPartyPush 和ThirdPartySMS,它们分别代表了第三方推送和短信服务。
  2. 创建了两个具体的类TencentThirdPartyPush 和TencentThirdPartySMS,它们实现了 ThirdPartyPush和 ThirdPartySMS 接口,分别表示腾讯的推送短信服务。
  3. 创建了另外两个具体的类,AliThirdPartyPush 和AliThirdPartySMS,它们也实现了 ThirdPartyPush 和ThirdPartySMS 接口,分别表示阿里的推送和短信服务。
  4. 定义了一个抽象工厂类 ThirdPartyTotalFactory,它包含两个抽象方法 createPusher 和 createSmser,用于创建不同厂商的推送服务和短信服务。
  5. 创建了具体的工厂类 AliFactory 和 TencentFactory,它们分别继承了 ThirdPartyTotalFactory 并实现了工厂类的抽象方法。AliFactory 用于创建阿里厂商的推送和短信服务,而 TencentFactory 用于创建腾讯厂商的推送和短信服务。使用抽象工厂模式创建不同厂商的推送和短信服务,并通过工厂方法将它们与具体的厂商实现解耦。这有助于现松耦合和易维护的代码结构。
public interface ThirdPartyPush {String push();
}
public interface ThirdPartySMS {String send();
}
public class TencentThirdPartyPush implements ThirdPartyPush {@Overridepublic String push() {return "腾讯推送";}
}
public class TencentThirdPartySMS implements ThirdPartySMS {@Overridepublic String send() {return "腾讯短信发送";}
}
public class AliThirdPartyPush implements ThirdPartyPush {@Overridepublic String push() {return "阿里推送";}
}
public class AliThirdPartySMS implements ThirdPartySMS {@Overridepublic String send() {return "阿里短信发送";}
}
public abstract class ThirdPartyTotalFactory {abstract ThirdPartyPush createPusher();abstract ThirdPartySMS createSmser();
}
public class AliFactory extends ThirdPartyTotalFactory {@OverrideThirdPartyPush createPusher() {return new AliThirdPartyPush();
}@OverrideThirdPartySMS createSmser() {return new AliThirdPartySMS();}
}
public class TencentFactory extends ThirdPartyTotalFactory {@OverrideThirdPartyPush createPusher() {return new TencentThirdPartyPush();
}@OverrideThirdPartySMS createSmser() {return new TencentThirdPartySMS();}
}

单例设计模式(Singleton Design Pattern)

理解起来非常简单。就是不管在任何情况下,一个类只能有一个对象。

  • 饿汉式

这种方式在类加载的时候就把服务实例初始化好了,所以这一步其实是线程安全的,不会说在多线程的环境下创建出很多个实例了。这种方式在对象类加载的时候就实例化了,所以其实有可能会造成一个问题,就是内存浪费,因为你不确定这个对象会不会使用,所以就会有一个懒汉式的模式,这个模式可以让我们在需要发短信的时候才创建这个实例对象,而不是一开始类加载的时候就创建。但是这个问题其实也不是问题,因为我们在项目中写代码,一定是有我们自己的考量的。当写了一个发送短信的服务
后,不可能说这个服务以后都不会调用的。而且,假设这种实例占用内存太多,那我们最好是能够在启动的时候就创建好,这样假如说有OOM的这种问题,我们也能及时发现,就是有问题我们要及时暴露出来,不要等到项目上线了才暴露出问题来,那样就很严重了。

public class SendSmsServiceHungrySingleton {
private static final SendSmsServiceHungrySingleton instance = newSendSmsServiceHungrySingleton();
private SendSmsServiceHungrySingleton() {}public static SendSmsServiceHungrySingleton getInstance() {return instance;}public String sendSms() {System.out.println("发送短信");return "OK";}
}
  • 懒汉式

饿汉式是比较饥饿,它立马就要拿到这个对象实例;懒汉,就是比较懒,它要等到调用的时候才创建对象实例。 这里就是直接在 getInstance 方法里面判断一下,这个实例有没有初始化,没有的话,我就初始化一下,已经初始化了就直接返回。

public class PushServiceLazySingleton {private static PushServiceLazySingleton instance;private PushServiceLazySingleton() {}public static PushServiceLazySingleton getInstance() {if(instance == null) {instance = new PushServiceLazySingleton();}return instance;}
}

这种方式实现起来还是比较简单的,代码逻辑很清晰。但是,这种方式其实在多线程的环境下是有问题的,它完全没办法保证我的项目里只会创建一个instance对象。

  1. 双重检查锁
    所以,我们引入一个新的解决方案,就是双重检查锁。这个锁什么意思,我们看代码就清楚了。
public class PushServiceLazyDoubleCheckSingleton {private static PushServiceLazyDoubleCheckSingleton instance;private PushServiceLazyDoubleCheckSingleton() {}public static PushServiceLazyDoubleCheckSingleton getInstance() {// 1. 第一次检查 instance 是否已经实例化if(instance == null) {synchronized(PushServiceLazyDoubleCheckSingleton.class) {// 2. 第二次检查 instance 是否已经实例化if(instance == null) {instance = new PushServiceLazyDoubleCheckSingleton();}}}return instance;}
}

这种情况下,其实还是有问题的,在一些极端的场景下,可能会有一个指令重排的问题。

  1. 静态内部类

还可以采用静态内部类的方式同样也是利用了类的加载机制,它与饿汉模式不同的是,它是在内部类里面去创建对象实例。这样的话,只要应用中不使用内部类,JVM就不会去加载这个单例类,也就不会创建单例对象,从而实现懒汉式的延迟加载。也就是说这种方式可以同时保证延迟加载和线程安全。

public class LazyStaticInnerClassSingleton {private LazyStaticInnerClassSingleton(){//解决反射破坏,因为反射可以调用私有的构造器if(LazyHolder.INSTANCE != null){throw new RuntimeException("不允许非法访问");}}
public static LazyStaticInnerClassSingleton getInstance(){return LazyHolder.INSTANCE;
}private static class LazyHolder{
private static final LazyStaticInnerClassSingleton INSTANCE = new LazyStaticInnerClassSingleton();}
}
  • 注册式
  1. 枚举单例

枚举类实现单例模式是极力推荐的单例实现模式,因为枚举是线程安全的,并且只会装载一次,枚举类是所有单例类 实现中唯一不会被破坏的单例模式(解决了反射与序列化破坏)

public enum SendServiceEnum {
INSTANCE;public static SendServiceEnum getInstance(){return INSTANCE;}public String send() {System.out.println("发送短信");return "OK";}
}
  1. 容器式单例
public final class ContainerSingleton {
private ContainerSingleton() {}
private static final ConcurrentHashMap<String, Object> instanceMap = new ConcurrentHashMap<>();
public static <T> T get(String key,Supplier<T> supplier) {
T instance = null;
if(!instanceMap.contains(key)) {
synchronized(ContainerSingleton.class) {
if(!instanceMap.contains(key)){instance = supplier.get();instanceMap.put(key,instance);
}else {instance = (T)instanceMap.get(key);
}
return instance;
}
}else {
return (T) instanceMap.get(key);
}
}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/752151.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker Compose 基本语法

services 是顶级节点&#xff0c;也就是你要启动的服务全部放在这里。 MySOL就是我们预期中的一个服务。 mysql8:指的是我们这个服务叫 mysql8. image:我们这个服务里运行的是什么镜像&#xff0c;或者说跑的是什么。这里指定了使用 mysql:8.0.29 这个版本。 command:启动命令&…

Linux进程管理:(六)SMP负载均衡

文章说明&#xff1a; Linux内核版本&#xff1a;5.0 架构&#xff1a;ARM64 参考资料及图片来源&#xff1a;《奔跑吧Linux内核》 Linux 5.0内核源码注释仓库地址&#xff1a; zhangzihengya/LinuxSourceCode_v5.0_study (github.com) 1. 前置知识 1.1 CPU管理位图 内核…

深度强化学习01

Random variable Probability Density Function 期望 Random Sampling 学习视频 这绝对是我看过最好的深度强化学习&#xff01;从入门到实战&#xff0c;7小时内干货不断&#xff01;_哔哩哔哩_bilibili

智慧城市新篇章:数字孪生的力量与未来

随着信息技术的迅猛发展和数字化浪潮的推进&#xff0c;智慧城市作为现代城市发展的新模式&#xff0c;正在逐步改变我们的生活方式和社会结构。在智慧城市的构建中&#xff0c;数字孪生技术以其独特的优势&#xff0c;为城市的规划、管理、服务等方面带来了革命性的变革。本文…

Mybatis-xml映射文件与动态SQL

xml映射文件 动态SQL <where><if test"name!null">name like concat(%,#{name},%)</if><if test"username!null">and username#{username}</if></where> <!-- collection&#xff1a;遍历的集合--> <!-- …

百科源码生活资讯百科门户类网站百科知识,生活常识

百科源码生活资讯百科门户类网站百科知识,生活常识 百科源码安装环境 支持php5.6&#xff0c;数据库mysql即可&#xff0c;需要有子目录权限&#xff0c;没有权限的话无法安装 百科源码可以创建百科内容&#xff0c;创建活动内容。 包含用户注册&#xff0c;词条创建&#xff…

解决方案:使用Vscode运行命令时,.出现 __vsc_prompt_cmd_original: command not found

参考:https://blog.csdn.net/qq_44949985/article/details/128902944 解决方案&#xff1a;使用Vscode运行命令时,.出现 __vsc_prompt_cmd_original: command not found 问题描述&#xff1a; 在本地的vscode上使用ssh-remote登录到远程服务器&#xff08;操作系统为ubuntu 18.…

Flask学习(四):路由转换器

默认的路由转换器&#xff1a; string &#xff08;缺省值&#xff09; 接受任何不包含斜杠的文本int接受正整数float接受正浮点数 path类似 string&#xff0c;但可以包含斜杠uuid接受 UUID 字符串 代码示例&#xff1a; app.route(/user/<username>) def show_u…

使用Python进行自然语言处理(NLP):NLTK与Spacy的比较【第133篇—NLTK与Spacy】

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 使用Python进行自然语言处理&#xff08;NLP&#xff09;&#xff1a;NLTK与Spacy的比较 自…

用尾插的思想实现移除链表中的元素

目录 一、介绍尾插 1.链表为空 2.链表不为空 二、题目介绍 三、思路 四、代码 五、代码解析 1. 2. 3. 4. 5. 6. 六、注意点 1. 2. 一、介绍尾插 整体思路为 1.链表为空 void SLPushBack(SLTNode** pphead, SLTDataType x) {SLTNode* newnode BuyLTNode(x); …

蓝桥杯并查集|路径压缩|合并优化|按秩合并|合根植物(C++)

并查集 并查集是大量的树&#xff08;单个节点也算是树&#xff09;经过合并生成一系列家族森林的过程。 可以合并可以查询的集合的一种算法 可以查询哪个元素属于哪个集合 每个集合也就是每棵树都是由根节点确定&#xff0c;也可以理解为每个家族的族长就是根节点。 元素集合…

UserTCP 传输数据时如何保证数据的可靠性?并以LabVIEW为例进行说明

TCP&#xff08;传输控制协议&#xff09;是一种面向连接的、可靠的、基于字节流的传输层通信协议。它通过多种机制保证数据的可靠性&#xff0c;确保数据在网络中从一端传输到另一端时&#xff0c;顺序正确且无误差。以下是TCP实现数据可靠性的一些关键机制&#xff1a; 1. 三…

【开源鸿蒙】模拟运行OpenHarmony轻量系统QEMU RISC-V版

文章目录 一、准备工作1.1 编译输出目录简介 二、QEMU安装2.1 安装依赖2.2 获取源码2.3 编译安装2.4 问题解决 三、用QEMU运行OpenHarmony轻量系统3.1 qemu-run脚本简介3.2 qemu-run脚本参数3.3 qemu-run运行效果3.4 退出QEMU交互模式 四、问题解决五、参考链接 开源鸿蒙坚果派…

scp命令——基于SSH协议远程文件复制

scp命令是英文词组secure copy的缩写&#xff0c;其功能是基于SSH协议的远程文件复制。由于数据是经过SSH协议加密传输的&#xff0c;因此会比HTTP和FTP更加安全。 scp命令可以在多个Linux系统之间通过网络进行文件复制&#xff0c;而cp命令只能在一个Linux系统内部进行文件复…

YOLOv8改进 | 图像去雾 | 门控可微分图像处理GDIP模块改善物体低照度检测检测(适用于图片不清晰等一切场景,全网独家首发)

一、本文介绍 本文给大家带来的改进机制是门控可微分图像处理GDIP模块&#xff0c;其可以理解为是一直图像增强领域的模块&#xff0c;其主要适用于雾天的一些去雾检测&#xff0c;当然了也适用于于一些图片模糊不清的场景&#xff0c;GDIP&#xff08;Gated Differentiable Im…

论文阅读——EarthPT

EarthPT: a time series foundation model for Earth Observation 一个Earth Observation (EO)预训练的Transformer。EarthPT是一个7亿参数解码Transformer基础模型&#xff0c;以自回归自监督方式进行训练&#xff0c;并专门针对EO用例进行开发。我们证明了EarthPT是一个有效的…

谷歌(edge)浏览器过滤,只查看后端发送的请求

打开F12 调试工具 选择Network 这是我们会发现 什么图片 文件 接口的请求很多很多&#xff0c;我们只需要查看我们后端发送的请求是否成功就好了 正常情况我们需要的都是只看接口 先点击这里这个 过滤 我们只需要点击 Fetch/XHR 即可过滤掉其他请求信息的展示 这样烦恼的问题就…

海豚调度系列之:单机部署

海豚调度系列之&#xff1a;单机部署 一、前置准备工作二、启动 DolphinScheduler Standalone Server三、登录 DolphinScheduler四、启停服务五、配置数据库 Standalone 仅适用于 DolphinScheduler 的快速体验. 如果你是新手&#xff0c;想要体验 DolphinScheduler 的功能&…

windows下修改mysql的max_allowed_packet的值

1)C:\Program Files\MySQL\MySQL Server 5.7 在MySQL 的安装目录下添加my.ini文件&#xff0c;同时添加空的data文件 2&#xff09;my.ini文件内容如下&#xff0c; [mysqld] port 3306 basedirC:\Program Files\MySQL\MySQL Server 5.7 datadirC:\Program Files\MySQL\MySQ…

lua 中的元表

a{ age0, __tostringfunction() { }, __callfunction() { }, } b{} a.__indexa{}//将a表中的__index指向自己 setmetatable(a,b)//将b设置为a的元表&#xff1b; __tostring 当子表a被当做字符串使用时会调用原表b中的__tostring方法, __call 当子表a被当做字符串使用时…