关于volatile与指令重排序的探讨

写在开头

在之前的学习我们了解到,为了充分利用缓存,提高程序的执行速度,编译器在底层执行的时候,会进行指令重排序的优化操作,但这种优化,在有些时候会带来 有序性 的问题。

那何为有序性呢?我们可以通俗理解为:程序执行的顺序要按照代码的先后顺序。 当然,之前我们还说过发生有序性问题时,我们可以通过给变量添加volatile修饰符进行解决。那么今天,我们继续学习,一起探讨一下volatile与指令重排之间的冤家路窄!

有序性问题

首先,我们来回顾一下之前写的一个关于有序性问题的测试类。

【代码示例1】

int a = 1;(1)
int b = 2;(2)
int c = a + b;(3)

上面的这段代码中,c变量依赖a,b的值,因此,在编译器优化重排时,c肯定会在a,b赋值以后执行,但a,b之间没有依赖关系,可能会发生重排序,但这种重排序即便到了多线程中依旧不会存在问题,因为即便重排对执行结果也无影响。

但有些时候,指令重排序可以保证串行语义一致,但是没有义务保证多线程间的语义也一致,我们继续看下面这段代码:

【代码示例2】

public class Test {private static int num = 0;private static boolean ready = false;//禁止指令重排,解决顺序性问题//private static volatile boolean ready = false;public static class ReadThread extends Thread {@Overridepublic void run() {while (!Thread.currentThread().isInterrupted()) {if (ready) {//(1)System.out.println(num + num);//(2)}System.out.println("读取线程...");}}}public static class WriteRead extends Thread {@Overridepublic void run() {num = 2;//(3)ready = true;//(4)System.out.println("赋值线程...");}}public static void main(String[] args) throws InterruptedException {ReadThread rt = new ReadThread();rt.start();WriteRead wr = new WriteRead();wr.start();Thread.sleep(10);rt.interrupt();System.out.println("rt stop...");}
}

我们定义了2个线程,一个用来求和操作,一个用来赋值操作,因为定义的是成员变量,所以代码(1)(2)(3)(4)之间不存在依赖关系,在运行时极可能发生指令重排序,如将(4)在(3)前执行,顺序为(4)(1)(3)(2),这时输出的就是0而不是4,但在很多性能比较好的电脑上,这种重排序情况不易复现。
这时,我们给ready 变量添加一个volatile关键字,就成功的解决问题了。

原因解析

volatile关键字可以禁止指令重排的原因主要有两个!

一、3 个 happens-before 规则的实现

  1. 对一个 volatile 变量的写 happens-before 任意后续对这个 volatile 变量的读;
  2. 一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作;
  3. happens-before 传递性,A happens-before B,B happens-before C,则 A happens-before C。

二、内存屏障
变量声明为 volatile 后,在对这个变量进行读写操作的时候,会通过插入特定的 内存屏障 的方式来禁止指令重排序。

内存屏障(Memory Barrier 又称内存栅栏,是一个 CPU 指令),为了实现volatile 内存语义,volatile 变量的写操作,在变量的前面和后面分别插入内存屏障;volatile 变量的读操作是在后面插入两个内存屏障。

具体屏障规则:

  1. 在每个 volatile 写操作的前面插入一个 StoreStore 屏障;
  2. 在每个 volatile 写操作的后面插入一个 StoreLoad 屏障;
  3. 在每个 volatile 读操作的后面插入一个 LoadLoad 屏障;
  4. 在每个 volatile 读操作的后面插入一个 LoadStore 屏障。

屏障说明:

  1. StoreStore:禁止之前的普通写和之后的 volatile 写重排序;
  2. StoreLoad:禁止之前的 volatile 写与之后的 volatile 读/写重排序;
  3. LoadLoad:禁止之后所有的普通读操作和之前的 volatile 读重排序;
  4. LoadStore:禁止之后所有的普通写操作和之前的 volatile 读重排序。

OK,知道了这些内容之后,我们再回头看代码示例2中,增加了volatile关键字后的执行顺序,在赋值线程启动后,执行顺序会变成(3)(4)(1)(2),这时打印的结果就为4啦!

volatile为什么不能保证原子性?

我们讲完了volatile修饰符保证可见性与有序性的内容,接下来我们思考另外一个问题,它能够保证原子性吗?为什么?我们依旧通过一段代码去证明一下!

【代码示例3】

public class Test {//计数变量static volatile int count = 0;public static void main(String[] args) throws InterruptedException {//线程 1 给 count 加 10000Thread t1 = new Thread(() -> {for (int j = 0; j <10000; j++) {count++;}System.out.println("thread t1 count 加 10000 结束");});//线程 2 给 count 加 10000Thread t2 = new Thread(() -> {for (int j = 0; j <10000; j++) {count++;}System.out.println("thread t2 count 加 10000 结束");});//启动线程 1t1.start();//启动线程 2t2.start();//等待线程 1 执行完成t1.join();//等待线程 2 执行完成t2.join();//打印 count 变量System.out.println(count);}
}

我们创建了2个线程,分别对count进行加10000操作,理论上最终输出的结果应该是20000万对吧,但实际并不是,我们看一下真实输出。

输出:

thread t1 count 加 10000 结束
thread t2 count 加 10000 结束
14281

原因:
Java 代码中 的 count++并非原子的,而是一个复合性操作,至少需要三条CPU指令:

  • 指令 1:把变量 count 从内存加载到CPU的寄存器
  • 指令 2:在寄存器中执行 count + 1 操作
  • 指令 3:+1 后的结果写入CPU缓存或内存

即使是单核的 CPU,当线程 1 执行到指令 1 时发生线程切换,线程 2 从内存中读取 count 变量,此时线程 1 和线程 2 中的 count 变量值是相等,都执行完指令 2 和指令 3,写入的 count 的值是相同的。从结果上看,两个线程都进行了 count++,但是 count 的值只增加了 1。这种情况多发生在cpu占用时间较长的线程中,若单线程对count仅增加100,那我们就很难遇到线程的切换,得出的结果也就是200啦。

要想解决也很简单,利用 synchronized、Lock或者AtomicInteger都可以,我们在后面的文章中会聊到的,请继续保持关注哦!

结尾彩蛋

如果本篇博客对您有一定的帮助,大家记得留言+点赞+收藏呀。原创不易,转载请联系Build哥!

在这里插入图片描述
如果您想与Build哥的关系更近一步,还可以关注“JavaBuild888”,在这里除了看到《Java成长计划》系列博文,还有提升工作效率的小笔记、读书心得、大厂面经、人生感悟等等,欢迎您的加入!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/751835.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Halcon OCR文字识别

1、OCR文字识别 OCR&#xff08;Optical Character Recognition&#xff0c;光学字符识别&#xff09;工具对图像中的文字进行识别和分析。 FontFile : Universal_0-9_NoRej dev_update_window (off) read_image (bottle, bottle2) get_image_size (bottle, Width, Height) dev…

JavaScript 中实现请求并发控制

文章目录 浏览器并发请求限制数&#xff08;图&#xff09;实现代码三方插件 假设有 30 个待办任务要执行&#xff0c;而我们希望限制同时执行的任务个数&#xff0c;即最多只有 3 个任务能同时执行。当正在执行任务列表 中的任何 1 个任务完成后&#xff0c;程序会自动从 待办…

VMware安装Ubuntu 18.04.2

下载Ubuntu映像 下载地址&#xff1a;http://old-releases.ubuntu.com/releases/18.04/ 下载名称&#xff1a; ubuntu-18.04.2-desktop-amd64.iso 清华镜像站&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/ 阿里云镜像站&#xff1a;https://mirrors.ali…

python 统计中国观鸟记录中心官网已观测的鸟类种类

python 统计中国观鸟记录中心官网已观测的鸟类种类 中国观鸟记录中心网站&#xff1a;https://www.birdreport.cn/ 先下载官网 Excel 文件 文件放置目录如下&#xff1a; home dataset xxx.xlsxxxx.xlsxxxx.xlsx Excelgrep.py &#xff08;进行文件内容提取的程序&#xff…

关于Ubuntu虚拟机突然上不了网的问题

今天刚重新把Ubuntu虚拟机下回来准备大干一场&#xff0c;结果去吃饭回来虚拟机就上不去网了&#xff0c;具体体现为右上角没有网络的图标&#xff0c;下图是有网络的情况&#xff0c;废话不多说&#xff0c;直接给出解决方案&#xff1a;博客在此 我就是运行了这三行代码就成功…

设计模式 — — 单例模式

一、是什么 单例模式只会在全局作用域下创建一次实例对象&#xff0c;让所有需要调用的地方都共享这一单例对象 二、实现 // 单例构造函数 function CreateSingleton (name) {this.name name;this.getName(); };// 获取实例的名字 CreateSingleton.prototype.getName func…

✅技术社区—跨域问题及解决方案

一、什么是跨域、为什么会跨域&#xff1f; 我们把问题分解 谁出现的跨域&#xff1f; 》 浏览器&#xff01; 为何出现&#xff1f; 》 同源策略 什么是同源策略&#xff1f; 根据百度百科 同源策略/SOP&#xff08;Same origin policy&#xff09;是一种约定&#xff0…

Linux 时间系统调用

UNIX及LinuxQ的时间系统是由「新纪元时间」Epoch开始计算起。Epoch是指定为1970年1月1日凌晨零点零分零秒&#xff0c;格林威治时间。目前大部份的UNX系统都是用32位来记录时间&#xff0c;正值表示为1970以后&#xff0c;负值则表示1970年以前。 对于当前时间到Epoch 我们用两…

代码算法训练营day10 | 232.用栈实现队列、225. 用队列实现栈

day10: 232.用栈实现队列225. 用队列实现栈 232.用栈实现队列 题目链接 状态&#xff1a; 文档&#xff1a;programmercarl.com 思路&#xff1a; 用栈实现队列。要先明白两者的区别。 栈&#xff1a;单开门&#xff0c;先进后出&#xff0c;只有一端能进出。 队列&#xff1a;…

继承 ResponseEntityExceptionHandler

目录 作用概述 示例-HttpRequestMethodNotSupportedException 示例-自定义异常处理 总示例 使用了ResponseEntityExceptionHandler后&#xff0c;为什么发生了异常后返回体为空 方法执行顺序 作用概述 这是一个方便的基类&#xff0c;用于希望通过 ExceptionHandler 方法…

Vue项目的搭建

Node.js 下载 Node.js — Download (nodejs.org)https://nodejs.org/en/download/ 安装 测试 winR->cmd执行 node -v配置 在安装目录下创建两个子文件夹node_cache和node_global,我的就是 D:\nodejs\node_cache D:\nodejs\node_global 在node_global文件下再创建一个…

并查集(详解+例题)

1、作用 将两个集合合并 询问两个元素是否在一个集合中 2、基本原理 每个集合用一颗树表示。树根的编号就是整个集合的编号。每个节点存储它的父节点&#xff0c;p[x]表示x的父节点。 3、实现 问题1&#xff1a;如何判断树根&#xff1a;if(p[x]x); 问题2&#xff1a;如何求…

C++ 特殊类及单例模式

文章目录 1. 前言2. 不能被拷贝的类3. 不能被继承的类4. 只能在堆上创建对象的类5. 只能在栈上创建对象的类6. 只能创建一个对象的类&#xff08;单例模式&#xff09; 1. 前言 在实际场景中&#xff0c;我们在编写类的过程中总会遇到一些特殊情况&#xff0c;比如设计一个类不…

深入解析红黑树(RB-Tree):原理、操作及应用

文章目录 一、红黑树的特点与性质二、红黑树的实现1、实现红黑树的插入操作2、红黑树的验证方法a. Check 函数b. IsBalance 函数 红黑树作为一种自平衡的二叉搜索树&#xff0c;在计算机科学领域中占据着重要的地位。它的设计旨在在维持树的平衡性的同时&#xff0c;保证各种操…

红队攻防之exe文件签名免杀

达则兼善天下&#xff0c;穷则独善其身 1、生成 cobaltstrike bin文件&#xff0c;选择raw选项。 2、使用 cobaltstrike分离免杀工具生成loader.exe文件。 3、使用UPX对生成的exe文件进行加壳&#xff0c;加壳前后对比文件的大小。 4、对loader.exe进行制作并签发证书-数字签名…

UDF提权

目录 一、UDF概述 二、提权条件 三、漏洞复现 (一) 信息收集 1. Nmap信息收集 1.1、查看当前IP地址 1.2、扫描当前网段&#xff0c;找出目标机器 1.3、快速扫描目标机全端口 2. dirb目录扫描 3. 第一个flag 3.1、目录遍历漏洞 3.2、flag 4. 敏感信息利用 (二) 漏…

ElasticSearch常见用法,看这一篇就够了(文末送书)

2024送书福利正式起航 关注「哪吒编程」&#xff0c;提升Java技能 文末送3本《一本书讲透Elasticsearch&#xff1a;原理、进阶与工程实践》 大家好&#xff0c;我是哪吒。 ElasticSearch是一款由Java开发的开源搜索引擎&#xff0c;它以其出色的实时搜索、稳定可靠、快速安…

土壤水分实测数据网站资源

农田土壤水分数据 貌似是站点数据&#xff0c;但是年份太老&#xff0c;而且也没找着下载的地方 2012年黄土高原土壤水分及相关土壤物理参数数据集 2007-2009年中国农业大学石羊河实验站玉米通量与生长观测数据集 2005&#xff5e;2014年CERN野外台站气象观测场土壤含水量数据…

一维差分(模板)

差分是前缀和的逆运算&#xff0c;对于一个数组a&#xff0c;其差分数组b的每一项都是a [ i ]和前一项a [ i − 1 ]的差。 注意&#xff1a;差分数组和原数组必须分开存放&#xff01;&#xff01;&#xff01;&#xff01; #include <iostream> using namespace std;t…

【回归预测】基于SSA-BP(麻雀搜索算法优化BP神经网络)的回归预测 多输入单输出【Matlab代码#69】

文章目录 【可更换其他算法&#xff0c;获取资源请见文章第6节&#xff1a;资源获取】1. BP神经网络2. 麻雀搜索算法3. SSA-BP神经网络模型的构建4. 部分代码展示5. 仿真结果展示 【可更换其他算法&#xff0c;获取资源请见文章第6节&#xff1a;资源获取】 1. BP神经网络 BP&…