深度学习-解读GoogleNet深度学习网络

深度学习-解读GoogleNet深度学习网络

深度学习中,经典网络引领一波又一波的技术革命,从LetNet到当前最火的GPT所用的Transformer,它们把AI技术不断推向高潮。2012年AlexNet大放异彩,它把深度学习技术引领第一个高峰,打开人们的视野。

用pytorch构建CNN经典网络模型GoogleNet,又称为Inception V1 ,还可以用数据进行训练模型,得到一个优化的模型。

深度学习

深度学习-回顾经典AlexNet网络:山高我为峰-CSDN博客

深度学习-CNN网络改进版LetNet5-CSDN博客

深度学习-回顾CNN经典网络LetNet-CSDN博客

GPT实战系列-如何用自己数据微调ChatGLM2模型训练_pytorch 训练chatglm2 模型-CSDN博客

Caffe笔记:python图像识别与分类_python 怎么识别 caffe-CSDN博客

深度学习-Pytorch同时使用Numpy和Tensors各自特效-CSDN博客

深度学习-Pytorch运算的基本数据类型_pytorch支持的训练数据类型-CSDN博客

深度学习-Pytorch如何保存和加载模型

深度学习-Pytorch如何构建和训练模型-CSDN博客

深度学习-Pytorch数据集构造和分批加载-CSDN博客

Python Faster R-CNN 安装配置记录_attributeerror: has no attribute 'smooth_l1_loss-CSDN博客

经典算法-遗传算法的python实现

经典算法-模拟退火算法的python实现

经典算法-粒子群算法的python实现-CSDN博客

GoogleNet概述

GoogLeNet是2014年Christian Szegedy提出的一种全新的深度学习结构,和VGGNet同一年诞生,获得2014年ILSVRC竞赛的第一名。

在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如overfit、梯度消失、梯度爆炸等。

inception的提出则从另一种角度来提升训练结果:能更高效的利用计算资源,在相同的计算量下能提取到更多的特征,从而提升训练结果。

网络结构

Inception结构

inception结构的主要贡献有两个:

一是使用1x1的卷积来进行升降维;

二是在多个尺寸上同时进行卷积再聚合。

在这里插入图片描述

GoogleNet 的结构主要有Inception模块构成,主要有9个Incepion模块,和两个卷积模块构成。Inception也有2个改版。

结构描述

输入图像3通道分辨率:224x224x3

9层:图像输入后,5个卷积层,3个全连接层,1个输出层;

(1)C1:64个conv 7x7,stride=2–> MaxPool 3x3, stride=2 --> 输出 64个56x56;

(2)C2:192个conv 3x3, stride=2 --> MaxPool 3x3, stride=2 --> 输出 192个28x28;

(3)inception(3a) :–> 输出 256个28x28;

(4)inception(3b) :–> 输出 480个28x28;–> MaxPool 3x3, stride=2 --> 输出 480个14x14;

(5)inception(4a) :–> 输出 512个14x14;

(6)inception(4b) :–> 输出 512个14x14;

(7)inception(4c) :–> 输出 512个14x14;

(8)inception(4d) :–> 输出 528个14x14;

(9)inception(4e) :–> 输出 832个14x14;–> MaxPool 3x3, stride=2 --> 输出 832个7x7;

(10)inception(5a) :–> 输出 832个7x7;

(11)inception(5b) :–> 输出 1024个7x7;–> AvgPool 7x1, stride=1 --> 输出 1024个1x1;

(12)Dropout(40%):–> 输出 1024个1x1;

(13)linear --> 输出 1000个1x1;

(14)softmax --> 输出 1000个1x1;

整个GoogleNet 网络包含的参数数量表。

Pytorch实现

以下便是使用Pytorch实现的经典网络结构GoogleNet

class ConvReLU(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride, padding):super().__init__()self.conv = nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=True),nn.ReLU(inplace=True),)    def forward(self, x):return self.conv(x)class InceptionModule(nn.Module):def __init__(self, in_channels, c1x1_out, c3x3_in, c3x3_out, c5x5_in, c5x5_out, pool_proj):super().__init__()self.branch1 = ConvReLU(in_channels=in_channels, out_channels=c1x1_out, kernel_size=1, stride=1, padding=0)self.branch2 = nn.Sequential(ConvReLU(in_channels=in_channels, out_channels=c3x3_in, kernel_size=1, stride=1, padding=0),ConvReLU(in_channels=c3x3_in, out_channels=c3x3_out, kernel_size=3, stride=1, padding=1))self.branch3 = nn.Sequential(ConvReLU(in_channels=in_channels, out_channels=c5x5_in, kernel_size=1, stride=1, padding=0),ConvReLU(in_channels=c5x5_in, out_channels=c5x5_out, kernel_size=5, stride=1, padding=2))self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),ConvReLU(in_channels=in_channels, out_channels=pool_proj, kernel_size=1, stride=1, padding=0))def forward(self, x):x1 = self.branch1(x)x2 = self.branch2(x)x3 = self.branch3(x)x4 = self.branch4(x)x = torch.cat([x1, x2, x3, x4], dim=1)return xclass AuxClassifier(nn.Module):def __init__(self, in_channels, n_classes):super().__init__()self.avgpool = nn.AdaptiveAvgPool2d(4)self.conv = ConvReLU(in_channels=in_channels, out_channels=128, kernel_size=1, stride=1, padding=0)self.fc1 = nn.Sequential(nn.Linear(in_features=128*4*4, out_features=1024, bias=True),nn.ReLU(inplace=True))self.dropout = nn.Dropout(p=0.7)self.fc2 = nn.Linear(in_features=1024, out_features=n_classes, bias=True)self.softmax = nn.Softmax(dim=-1)def forward(self, x):b, _, _ ,_ = x.shapex = self.avgpool(x)x = self.conv(x)x = self.fc1(x.view(b, -1))x = self.dropout(x)x = self.fc2(x)x = self.softmax(x)return xclass GooLeNet(nn.Module):def __init__(self, in_channels, n_classes) -> None:super().__init__()self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.avgpool = nn.AdaptiveAvgPool2d(output_size=1)self.conv1 = nn.Sequential(ConvReLU(in_channels=in_channels, out_channels=64, kernel_size=7, stride=2, padding=3),nn.LocalResponseNorm(size=5, k=2, alpha=1e-4, beta=0.75),)self.conv2 = nn.Sequential(ConvReLU(in_channels=64, out_channels=64, kernel_size=1, stride=1, padding=0),ConvReLU(in_channels=64, out_channels=192, kernel_size=3, stride=1, padding=1),nn.LocalResponseNorm(size=5, k=2, alpha=1e-4, beta=0.75),)self.inception3a = InceptionModule(in_channels=192, c1x1_out=64, c3x3_in=96, c3x3_out=128, c5x5_in=16, c5x5_out=32, pool_proj=32)self.inception3b = InceptionModule(in_channels=256, c1x1_out=128, c3x3_in=128, c3x3_out=192, c5x5_in=32, c5x5_out=96, pool_proj=64)self.inception4a = InceptionModule(in_channels=480, c1x1_out=192, c3x3_in=96, c3x3_out=208, c5x5_in=16, c5x5_out=48, pool_proj=64)self.inception4b = InceptionModule(in_channels=512, c1x1_out=160, c3x3_in=112, c3x3_out=224, c5x5_in=24, c5x5_out=64, pool_proj=64)self.inception4c = InceptionModule(in_channels=512, c1x1_out=128, c3x3_in=128, c3x3_out=256, c5x5_in=24, c5x5_out=64, pool_proj=64)self.inception4d = InceptionModule(in_channels=512, c1x1_out=112, c3x3_in=144, c3x3_out=288, c5x5_in=32, c5x5_out=64, pool_proj=64)self.inception4e = InceptionModule(in_channels=528, c1x1_out=256, c3x3_in=160, c3x3_out=320, c5x5_in=32, c5x5_out=128, pool_proj=128)self.inception5a = InceptionModule(in_channels=832, c1x1_out=256, c3x3_in=160, c3x3_out=320, c5x5_in=32, c5x5_out=128, pool_proj=128)self.inception5b = InceptionModule(in_channels=832, c1x1_out=384, c3x3_in=192, c3x3_out=384, c5x5_in=48, c5x5_out=128, pool_proj=128)self.dropout = nn.Dropout(p=0.4)self.fc = nn.Linear(in_features=1024, out_features=n_classes, bias=True)self.softmax = nn.Softmax(dim=-1)self.aux_classfier1 = AuxClassifier(in_channels=512, n_classes=n_classes)self.aux_classfier2 = AuxClassifier(in_channels=528, n_classes=n_classes)def forward(self, x):b, _, _, _ = x.shapex = self.conv1(x)print('# Conv1 output shape:', x.shape)x = self.maxpool(x)print('# Pool1 output shape:', x.shape)x = self.conv2(x)print('# Conv2 output shape:', x.shape)x = self.maxpool(x)print('# Pool2 output shape:', x.shape)x = self.inception3a(x)print('# Inception3a output shape:', x.shape)x = self.inception3b(x)print('# Inception3b output shape:', x.shape)x = self.maxpool(x)print('# Pool3 output shape:', x.shape)x = self.inception4a(x)print('# Inception4a output shape:', x.shape)aux1 = self.aux_classfier1(x)print('# aux_classifier1 output shape:', aux1.shape)x = self.inception4b(x)print('# Inception4b output shape:', x.shape)x = self.inception4c(x)print('# Inception4c output shape:', x.shape)x = self.inception4d(x)print('# Inception4d output shape:', x.shape)aux2 = self.aux_classfier2(x)print('# aux_classifier2 output shape:', aux2.shape)x = self.inception4e(x)print('# Inception4e output shape:', x.shape)x = self.maxpool(x)print('# Pool4 output shape:', x.shape)x = self.inception5a(x)print('# Inception5a output shape:', x.shape)x = self.inception5b(x)print('# Inception5b output shape:', x.shape)x = self.avgpool(x)print('# Avgpool output shape:', x.shape)x = self.dropout(x.view(b, -1))print('# dropout output shape:', x.shape)x = self.fc(x)print('# FC output shape:', x.shape)x = self.softmax(x)print('# Softmax output shape:', x.shape)return x, aux1, aux2inputs = torch.randn(4, 3, 224, 224)
cnn = GooLeNet(in_channels = 3, n_classes = 1000)
outputs = cnn(inputs)

在这里插入图片描述

大家可以和前面的对照差异,也可以一窥DeepLearning技术的突破点。

在VGGNet 是一大创举,DeepMind团队更闻名的是在围棋开创一片天地,AlphaGo风靡一时,把人工智能推向又一个高潮,CNN网络引领的深度学习蓬勃发展,造就人工智能技术革命的起点。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案_通义千问 ptuning-CSDN博客

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-让CodeGeeX2帮你写代码和注释_codegeex 中文-CSDN博客

GPT实战系列-ChatGLM3管理工具的API接口_chatglm3 api文档-CSDN博客

GPT实战系列-大话LLM大模型训练-CSDN博客

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/750595.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

android studio 连接mumu模拟器调试

1、打开mumu模拟器 2、在Android Studio 中 控制台 cd 到 sdk 目录下 platform-tools 文件夹,有一个adb.exe 可运行程序 一般指令: adb connect 127.0.0.1:7555 但是这个执行在window环境下可能会报错 解决方法是在 adb 之前加 ".\", 问题…

【AI】用iOS的ML(机器学习)创建自己的AI App

用iOS的ML(机器学习)创建自己的AI App 目录 用iOS的ML(机器学习)创建自己的AI App机器学习如同迭代过程CoreML 的使用方法?软件要求硬件开始吧!!构建管道:设计和训练网络Keras 转 CoreML将模型集成到 Xcode 中结论推荐超级课程: Docker快速入门到精通Kubernetes入门到…

迷茫了!去大厂还是创业?

大家好,我是麦叔,最近我创建了一个 学习圈子 有球友在 星球 里提问。 大厂的layout岗位和小厂的硬件工程师岗位,该如何选择? 这个问题我曾经也纠结过,不过现在的我,I am awake! 肯定是有大点大。…

GiT: Towards Generalist Vision Transformer through Universal Language Interface

GiT: Towards Generalist Vision Transformer through Universal Language Interface 相关链接:arxiv github 关键字:Generalist Vision Transformer (GiT)、Universal Language Interface、Multi-task Learning、Zero-shot Transfer、Transformer 摘要 …

小清新卡通人物404错误页面模板源码

小清新卡通人物404错误页面模板源码,源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果,也可以上传到服务器里面 下载地址 小清新卡通人物404错误页面模板源码

ClickHouse:一款高效且强大的列式数据库管理系统

ClickHouse是一款开源的列式数据库管理系统,专为大规模数据仓库和数据分析应用而设计。它允许用户快速地存储和处理海量数据,同时提供了简单易用的SQL接口。本文将介绍ClickHouse的概念、技术原理以及使用案例,并探讨其优势和挑战。 一、引言…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:WaterFlow)

瀑布流容器,由“行”和“列”分割的单元格所组成,通过容器自身的排列规则,将不同大小的“项目”自上而下,如瀑布般紧密布局。 说明: 该组件从API Version 9 开始支持。后续版本如有新增内容,则采用上角标单…

Django验证码(二)

一、生成图片 1.1、说明 通过pillow模板库生成图片,步骤如下 安装pillow模板建立 生成验证码内容 方法建立 生成验证码颜色 方法建立 生成验证码 方法1.2、需要安装 Pillow 库 pip install Pillow==9.3.01.3、生成验证码内容 import randomdef random_str(length=4):"…

html中如何让网页禁用右键禁止查看源代码

在网页中,辛辛苦苦写的文章,被别人复制粘贴给盗用去另很多站长感到非常无奈,通常大家复制都会使用选取右键复制,或CTRLC等方式,下面介绍几种禁止鼠标右键代码,可减少网页上文章被抄袭的几率,当然…

Linux学习方法-框架学习法——Linux系统框架

配套视频学习链接:https://www.bilibili.com/video/BV1HE411w7by?p2&vd_sourced488bc722b90657aaa06a1e8647eddfc 目录 Linux系统框架(从裸机到OS) Linux可看成是一个大软件/大程序 应用和驱动 内核态和用户态 Linux的文件系统 Linux初学者首先要搞清楚三…

Microsoft Word 符号 / 特殊符号

Microsoft Word 符号 / 特殊符号 1. 插入 -> 符号 -> 其他符号 -> Wingdings 2References 1. 插入 -> 符号 -> 其他符号 -> Wingdings 2 ​ References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

创新指南|制药行业如何拥抱生成式AI在新药发现与开发中突破获益

生成式AI在药物发现中的应用可加速药物研发过程,并可能降低成本。通过利用GenAI,制药公司能在早期药物发现和开发中实现更快的成果,这包括从目标识别、验证,到优化的多个环节。 AI有潜力在药物筛选和优先排序、目标识别及验证、药…

Jmeter+Ant 接口自动化环境配置指南

一 、Jmeter安装与配置 https://blog.csdn.net/tester_sc/article/details/80746405 注:Jmeter5.0的环境变量配置与4.0或历往老版本有部分小差异,笔者用的Jmeter 5.0 二 、Ant的安装与配置 # Ant下载地址(下载到指定目录后,进行解压到当前…

python 爬取人民新闻

基础信息获取: 要闻url:https://www.gov.cn/yaowen/liebiao/home.htm 下一页的url:https://www.gov.cn/yaowen/liebiao/home_1.htm 基础代码: import re import openpyxl import requests from lxml import etree import osdef …

JavaWeb笔记 --- 四、HTMlCSS

四、HTMl&CSS HTML入门 基本标签 图片、音频、视频标签 尺寸单位 px:像素 百分比 超链接标签 列表标签 表格标签 布局标签 表单标签 CSS导入方式 CSS选择器

YOLOv9改进策略:注意力机制 | 归一化的注意力模块(NAM)

💡💡💡本文改进内容: NAM作为一种高效且轻量级的注意力机制。采用了CBAM的模块集成并重新设计了通道和空间注意子模块。 yolov9-c-NAMAttention summary: 965 layers, 51000614 parameters, 51000582 gradients, 238.9 GFLOPs 改…

重新认识BIO、NIO、IO多路复用、Select、Poll、Epollo它们之间的关系

目录 一、背景 二、名词理解 (1)BIO (2)NIO (3)IO多路复用 (4)Select、Poll、Epollo 三、他们之间的关系总结 一、背景 最近又在学习网络IO相关知识,对我们常说的…

linuxOPS基础_linux命令合集

uname查看操作系统信息 命令:uname [参数] 作用:获取计算机操作系统相关信息 参数:-a,选项-a代表all,表示获取全部的系统信息(类型、全部主机名、内核版本、发布时间、开源计划) 用法一&…

19. UE5 RPG使用GameplayEffect的Attribute Based Modifiers

前几篇文章我也说了GE的基础使用,但是,对一些属性的应用没有述说,后续,我将一点一点的将它们如何使用书写下来。 这一篇,主要就讲解一下Attribute Based Modifiers使用,先说一下它的应用场景,一…

9.用FFmpeg测试H.264文件的解码时间

1. Essence of Method 要测试对H.264文件的解码时间,可以使用FFmpeg进行操作。FFmpeg是一个开源的多媒体处理工具,可以用来处理视频和音频文件,包括解码H.264文件。以下是使用FFmpeg的命令行来测试解码时间的方法: ffmpeg -i in…