基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 ESTAR模型概述

4.2 WNL值,P值, Q值,12阶ARCH值

4.3ADF检验

5.完整程序


1.程序功能描述

        基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真.主要通过M-ESTAR模型进行计算,主要涉及到的统计量有WNL值,P值, Q值,12阶ARCH值。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

....................................................................
%%
%调用模型ESTAR
for i = 1:length(Real_exchange_rate)i[y,th] = func_MESTAR2(Real_exchange_rate{i});Real_exchange_rate_ESTAR{i} = y;%估计得到的thetatheta{i}                    = th(end);
endk = [-1 -1 -0.3 -0.3 -0.3 -0.3 -1 -0.3 -0.3 -0.3 -0.3 -0.3 -1 -0.3 -0.3];
for i = 1:length(Real_exchange_rate)tmps = -2:0.25:2;for j = 1:length(tmps)  T{i}(j)  = 1-exp(-(theta{i}*tmps(j)^2 + theta{i}*k(i)*tmps(j)));end
endfigure; 
plot(tmps,T{1},'b-*');hold on 
plot(tmps,T{8},'r-^');hold on 
plot(tmps,T{2},'k-o');hold on 
plot(tmps,T{13},'m-o');hold on  
grid on
legend('Australia','Malaysia','Canada','Thailand');figure; 
plot(tmps,T{9},'b-*');hold on 
plot(tmps,T{10},'r-^');hold on 
plot(tmps,T{4},'k-o');hold on 
plot(tmps,T{14},'m-o');hold on  plot(tmps,T{5},'g-^');hold on 
plot(tmps,T{11},'y-o');hold on 
plot(tmps,T{3},'k-*');hold on  grid on
legend('NewZealand','Singapore','Denmark','UnitedKingdom','HongKong','Switzerland','China');%计算Q(1)
for i = 1:length(Real_exchange_rate)s     = func_Ljung_Box(Real_exchange_rate_ESTAR{i},1); Q1{i} = s;
end
%计算Q(12)
for i = 1:length(Real_exchange_rate)s      = func_Ljung_Box(Real_exchange_rate_ESTAR{i},12); Q12{i} = s;
end%%
%显示诸如Table2一样的表格数据
fprintf('Countries      theta         Q(1)        Q(12) \n\n');
for i = 1:15if i == 1fprintf('Australia      ');endif i == 2fprintf('Canada         ');end    if i == 3fprintf('China          ');end        if i == 4fprintf('Denmark        ');end        if i == 5 fprintf('HongKong       ');end    if i == 6fprintf('Japan          ');endif i == 7fprintf('SouthKorea     ');end    if i == 8fprintf('Malaysia       ');end        if i == 9fprintf('NewZealand     ');end        if i == 10fprintf('Singapore      ');end     if i == 11fprintf('Switzerland    ');endif i == 12fprintf('Taiwan         ');end    if i == 13fprintf('Thailand       ');end        if i == 14fprintf('UnitedKingdom  ');end        if i == 15fprintf('issue          ');end        fprintf('%3.4f        ',theta{i});fprintf('%3.4f      ',Q1{i}); fprintf('%3.4f      ',Q12{i}); fprintf('\n\n'); 
end
16_014m

4.本算法原理

4.1 ESTAR模型概述

        ESTAR(Exponential Smooth Transition AutoRegressive model)是一种混合时间序列模型,它结合了指数平滑法和状态转换自回归模型的特点。在经济数据分析中,尤其是处理诸如CPI(消费者物价指数)这类具有可能的非线性趋势变化以及结构突变的数据时,ESTAR模型具有很强的应用价值。它能够捕捉到数据中的长期趋势、季节性变动以及潜在的平滑过渡现象。

       一个简单的ESTAR模型可以表示为:

       状态变量St​ 通常通过如下方式定义,包含两个状态(例如常态和平稳期)并允许平滑地在两者间过渡:

其中,

St​ 在 [0, 1] 区间内取值,代表从一种状态向另一种状态的转换程度。

γ 是转换速度参数,决定着状态转换的快慢。

τt​ 是转移函数,它是一个关于某些解释变量(如时间变量或其他宏观经济指标)的单调递增函数,当这些变量达到某个阈值时会触发状态的转变。

4.2 WNL值,P值, Q值,12阶ARCH值

4.3ADF检验

      ADF检验是增项DF检验,DF检验用于检验变量的非平稳性。若时间序列模型中含有单位根,则模型是非平稳的。对于AR(1)自回归滞后一阶模型,滞后期系数如果等于1,则无法收敛。DF检验的原假设为H0:beta=1,H1:beta<1。其中beta可以用OLS去估计。t=(beta-1)/std(beta)。t统计量并不服从t分布,而是服从DF分布。DF分布是Dickey Fuller研究的专门检验单位根的分布,DF检验是左单侧检验,当计算的t高于临界值则接受原假设(此模型是非平稳的),若t小于临界值,则拒绝原假设(此模型是平稳的)。   

      增项DF检验简称(ADF)用于更为复杂的模型,当模型AR(p)高阶自回归,或者带有截距项以及趋势项的时候,需要做差分ADF检验。检验是一般是三个基准模型:a:AR(1),b:AR(1)再加截距,c:b的基础上再加趋势。一般先从c开始单位根检验,当确定不含有趋势后,继续用b检验,若存在单位根,继续用a检验。当然在这个过程中如果发现不存在单位根,则检验结束。如果检验的c模型仍然不能拒绝存在单位根,则进行一阶差分后再检验,如果仍然存在单位根,再差分……直到拒绝单位根为止。根据模型的选定,分别查ADF分布表,对应临界值判断是否存在单位根。在ADF检验中,由于做了差分,通常的原假设是系数=0,因此t统计量服从t分布,可以通过回归的t值来和ADF分布进行对比。在计量软件Eviews中,unit root test选项可以根据研究的需要直接进行ADF检验。

5.完整程序

VVV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/750446.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode Python - 58. 最后一个单词的长度

目录 题目描述解法运行结果 题目描述 给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大子字符串。 示例 1&#xff1a; 输入&#xff1a;s “Hel…

【Vue】Request模块 - axios 封装Vuex的持久化存储

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;Vue ⛺️稳中求进&#xff0c;晒太阳 Request模块 - axios 封装 使用axios来请求后端接口&#xff0c;一般会对axios进行一些配置&#xff08;比如配置基础地址&#xff0c;请求响应拦截器…

HCIP—BGP邻居关系建立实验

BGP的邻居称为&#xff1a;IBGP对等体 EBGP对等体 1.EBGP对等体关系&#xff1a; 位于 不同自治系统 的BGP路由器之间的BGP对等体关系 EBGP对等体一般使用 直连建立 对等体关系&#xff0c;EBGP邻居之间的报文 TTL中值设置为1 两台路由器之间建立EBGP对等体关系&#xff0…

vue3新功能-Teleport

1.teleport 在组件内的任何位置渲染内容 将一个组件内部的一部分模板“传送”到该组件的 DOM 结构外层的位置去。 例:将组件dialog添加到body下面 <teleport to"body"> <el- dialog --> </teleport> 2.fragments 多个根元素外层不需要…

启智AI协作平台资源调用留档

skywalk163/airoot: 好好学习&#xff0c;天天向上&#xff01; 这是AI学习和实践的基地&#xff01; - airoot - OpenI - 启智AI开源社区提供普惠算力&#xff01; 发现启智AI协作平台修改了资源访问方式&#xff0c;留档以便查找。 为解决平台内各种算力资源环境下模型、数据…

遵循Web标准规范,构建优质网页

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Linux操作系统-汇编LED驱动程序基础

一、汇编LED原理分析 IMX6ULL-LED灯硬件原理分析&#xff1a; 1、使能时钟&#xff0c;CCGR0-CCGR6这7个寄存器控制着IMX6ULL所有外设时钟的使能。为了简单&#xff0c;设置CCGR0-CCGR6这7个寄存器全部为0XFFFFFFFF&#xff0c;相当于使能全部外设时钟。&#xff08;在IMX6ULL芯…

【Flink SQL】Flink SQL 基础概念(三):SQL 动态表 连续查询

《Flink SQL 基础概念》系列&#xff0c;共包含以下 5 篇文章&#xff1a; Flink SQL 基础概念&#xff08;一&#xff09;&#xff1a;SQL & Table 运行环境、基本概念及常用 APIFlink SQL 基础概念&#xff08;二&#xff09;&#xff1a;数据类型Flink SQL 基础概念&am…

大数据平台测试-我是怎么面试高级测试的

前言 下面是我面试时会问的一些问题整体提问思路&#xff1a;接口自动化框架->UI 自动化框架->测试用例设计思维->Linux->SQL->Python->常用算法和数据结构->Shell 脚本->jmeter->Docker->Jenkins 重点还是 UI、接口自动化等方面的技能&#xf…

简述从浏览器发出请求到数据返回的全过程

下面是我结合经验概述的从浏览器发出请求到数据返回的全过程。 一、用户请求 1、用户在浏览器输入URL&#xff0c;或通过功能发起请求&#xff1b; 2、解析URL&#xff0c;提取协议(http,https等)&#xff0c;IP&#xff0c;端口&#xff0c;域名&#xff0c;路径等信息&#x…

CSS学习(2)-盒子模型

1. CSS 长度单位 px &#xff1a;像素。em &#xff1a;相对元素 font-size 的倍数。rem &#xff1a;相对根字体大小&#xff0c;html标签就是根。% &#xff1a;相对父元素计算。 注意&#xff1a; CSS 中设置长度&#xff0c;必须加单位&#xff0c;否则样式无效&#xff…

Vue2(二):计算属性、监视属性、二者的区别

一、计算属性 1. 使用插值语法和methods拼接姓名 如果样式要求不多的话这样写没问题&#xff0c;如下代码是截取我输入的姓的前三个字母 <div id"root">姓&#xff1a;<input type"text" v-moudel"firstName">名&#xff1a;<…

Unity2019.2.x 导出apk 安装到安卓Android12+及以上的系统版本 安装出现-108 安装包似乎无效的解决办法

Unity2019.2.x 导出apk 安装到安卓Android12及以上的系统版本 安装出现-108 安装包似乎无效的解决办法 导出AndroidStudio工程后 需要设置 build.gradle文件 // GENERATED BY UNITY. REMOVE THIS COMMENT TO PREVENT OVERWRITING WHEN EXPORTING AGAINbuildscript {repositor…

MySQL的目录结构

安装目录 /usr/local/mysql数据目录 /usr/local/mysql/data配置目录 /usr/local/etc/my.cnf

第二十四章 Web Gateway 管理页面概述

文章目录 第二十四章 Web Gateway 管理页面概述访问Web网关管理页面启用从其他客户端地址的访问 第二十四章 Web Gateway 管理页面概述 Web Gateway 提供了一组管理页面&#xff0c;可以使用它们来配置和监视 Web Gateway。本页介绍如何访问这些页面以及如何本地化它们&#x…

2024海淘且免KYC虚拟信用卡

很多小伙伴都需要海淘&#xff0c;亚马逊、ebay、国际阿里巴巴、速卖通等等&#xff0c;我们这里都有卡支持&#xff0c;并且免kyc、免年费免月费 点击获取 按图片步骤注册开卡 海淘注意事项 海淘&#xff08;跨境购物&#xff09;可以让人们在国外购买到更多种类的商品&…

力扣每日一题 矩阵中移动的最大次数 DP

Problem: 2684. 矩阵中移动的最大次数 复杂度 ⏰ 时间复杂度: O ( n m ) O(nm) O(nm) &#x1f30e; 空间复杂度: O ( n m ) O(nm) O(nm) Code class Solution { public int maxMoves(int[][] grid){int n grid.length;int m grid[0].length;int[][] f new int[n][m]…

Text-to-SQL 工具Vanna + MySQL本地部署 | 数据库对话机器人

今天我们来重点研究与实测一个开源的Text2SQL优化框架 – Vanna 1. Vanna 简介【Text-to-SQL 工具】 Vanna 是一个基于 MIT 许可的开源 Python RAG&#xff08;检索增强生成&#xff09;框架&#xff0c;用于 SQL 生成和相关功能。它允许用户在数据上训练一个 RAG “模型”&a…

浅谈HTTP 和 HTTPS (中间人问题)

前言 由于之前的文章已经介绍过了HTTP , 这篇文章介绍 HTTPS 相对于 HTTP 做出的改进 开门见山: HTTPS 是对 HTTP 的加强版 主要是对一些关键信息 进行了加密 一.两种加密方式 1.对称加密 公钥 明文 密文 密文 公钥 明文 2.非对称加密 举个例子就好比 小区邮箱 提供一…

调皮的String及多种玩法(上部)

&#x1f468;‍&#x1f4bb;作者简介&#xff1a;&#x1f468;&#x1f3fb;‍&#x1f393;告别&#xff0c;今天 &#x1f4d4;高质量专栏 &#xff1a;☕java趣味之旅 欢迎&#x1f64f;点赞&#x1f5e3;️评论&#x1f4e5;收藏&#x1f493;关注 &#x1f496;衷心的希…