【AI】Ubuntu系统深度学习框架的神经网络图绘制

一、Graphviz

在Ubuntu上安装Graphviz,可以使用命令行工具apt进行安装。

安装Graphviz的步骤相对简单。打开终端,输入以下命令更新软件包列表:`sudo apt update`。之后,使用命令`sudo apt install graphviz`来安装Graphviz软件包。为了验证安装是否成功,可以运行`dot -V`命令检查版本信息。若想在conda环境中使用Graphviz,可以使用`conda install graphviz`命令进行安装。

Graphviz的使用包括编写dot脚本、编译生成图像两个主要步骤。

编写dot脚本是使用Graphviz的第一步。可以用任何文本编辑器创建一个.dot文件,例如使用vim编辑器创建一个名为text.dot的文件,并在其中编写图形定义语句。接着,利用Graphviz提供的dot工具将该文件编译成想要的图像格式,如PNG或PDF。编译命令为`dot -Tpng test.dot -o test.png`,其中`-T`选项指定输出格式,`-o`选项指定输出文件名。此外,如果是在Python环境下使用Graphviz,可以通过安装pygraphviz库来与Graphviz进行交互。

总得来说,在Ubuntu系统上安装和使用Graphviz主要是通过命令行安装软件包,然后编写dot脚本并使用dot工具将脚本编译成图像。Graphviz是一个非常灵活的图形可视化工具,支持多种输出格式,并且可以在多种开发环境中使用。

二、PyTorch

PyTorch本身没有内置功能来绘制神经网络架构的图。然而,有一些第三方库可以帮助我们完成这项工作,比如`torchviz`和`hiddenlayer`。下面我将使用`torchviz`库来展示如何绘制一个简单的神经网络。
首先,需要安装`torchviz`库和graphviz。

python -m pip install torchviz

一旦安装完成,可以用以下代码来创建一个简单的神经网络并使用`torchviz`来绘制它的结构图:

import torch
import torch.nn as nn
from torchviz import make_dot# 定义一个简单的神经网络
class SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc1 = nn.Linear(10, 5)self.relu = nn.ReLU()self.fc2 = nn.Linear(5, 2)def forward(self, x):x = self.fc1(x)x = self.relu(x)x = self.fc2(x)return x# 创建网络和一个假的输入
model = SimpleNet()
dummy_input = torch.randn(1, 10)# 使用 model 和 dummy_input 来生成一个图
vis_graph = make_dot(model(dummy_input), params=dict(model.named_parameters()))# 输出图到一个文件或显示它(需要Graphviz的支持)
vis_graph.view()

在这段代码中,首先我们定义了一个简单的神经网络`SimpleNet`,它包含一个输入层(`fc1`)、一个ReLU激活函数(`relu`)和一个输出层(`fc2`)。使用这个网络模型和一个随机生成的输入`dummy_input`,我们用`make_dot`方法创建了一个可视化图。`make_dot`方法返回的对象可以调用`view`方法来展示图像,或者可以保存它到一个文件中。
请注意,`torchviz`是一个轻量级的工具,它适用于小型到中型的网络可视化。对于复杂的网络,它的显示可能会非常混乱。而且,`torchviz`不会给出太多样式化的选项;它主要是为了呈现计算图的结构,而不是为了创作精细的架构示意图。如果想要更复杂的可视化功能,可能需要探索其他工具,比如`Netron`。

三、Keras

在Keras中,可以使用keras.utils.plot_model函数来绘制神经网络图。这个函数将神经网络的架构可视化为一个图形,其中节点代表层,边表示数据流动的方向。以下是一个使用Keras绘制神经网络图的例子:

首先,确保已经安装了Keras库。

然后,可以创建一个简单的Keras模型并使用plot_model函数来绘制它:

from keras.models import Sequential  
from keras.layers import Dense  
from keras.utils import plot_model  # 创建一个简单的序贯模型  
model = Sequential()  
model.add(Dense(32, activation='relu', input_shape=(10,)))  
model.add(Dense(1, activation='sigmoid'))  # 编译模型  
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])  # 绘制模型图  
plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)

在这个例子中,我们创建了一个简单的序贯模型,它包含两个全连接层(Dense层)。plot_model函数被用来生成模型的可视化图,并将其保存为model_plot.png文件。参数show_shapes=True会在图中显示每一层输出的形状,而show_layer_names=True则会显示层的名字。

运行这段代码后,应该会在脚本所在的目录下找到一个名为model_plot.png的图片文件,它展示了神经网络模型的结构。

请注意,plot_model函数依赖于matplotlib和pydot等库来生成图形。如果没有安装这些库,可能需要先安装它们:

python -m pip install matplotlib pydot

此外,由于pydot依赖于Graphviz软件,可能还需要在系统上安装Graphviz。

安装Graphviz的具体步骤取决于操作系统。例如,在Ubuntu上,可以使用以下命令安装:

sudo apt-get install graphviz

安装完这些依赖后,应该就能成功使用plot_model函数来绘制Keras神经网络图了。


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/750129.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL语法分类 DQL(1)基础查询

//语法 select 字段列表 from 表名列表 where条件列表 group by分组字段 having 分组后的条件 order by排序 limit 分页限定为了更好的学习这里给出基本表数据用于查询操作 create table student (id int, name varchar(20), age int, sex varchar(5),address varchar(100),ma…

springboot/ssm图书管理系统Java图书馆借阅管理系统web图书借阅系统

springboot/ssm图书管理系统Java图书馆借阅管理系统web图书借阅系统 基于springboot(可改ssm)vue项目 开发语言:Java 框架:springboot/可改ssm vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库&#…

将 OpenCV 与 Eclipse 结合使用(插件 CDT)

返回:OpenCV系列文章目录(持续更新中......) 上一篇:将OpenCV与gcc和CMake结合使用 下一篇:OpenCV4.9.0在windows系统下的安装 警告: 本教程可以包含过时的信息。 先决条件 两种方式,一种…

CODESYS开发教程13-长字符串处理

摘要:这是一篇写给新手的关于CODESYS开发环境的小白教程,一看就懂...... 在以前的《CODESYS开发教程7-字符串及其基本操作》教程中,介绍了字符串及其基本操作,有朋友看了以后觉得不过瘾,希望有一些关于字符串的更加深入…

Android Framework基础之C语言入门

C语言入门详解 一、C语言简介 C语言是一种通用的、过程式的编程语言,支持结构化编程、词法变量作用域和递归等功能,是迄今为止最为强大的编程语言之一。C语言设计提供了能轻松实现底层的访问,通常用于系统软件开发,应用程序的一…

ES系列之快照与恢复

概述 原理 ES底层核心基于lucene,一个分片即是一个lucene对象实例,ES快照(snapshot)本质是对lucene物理文件的拷贝。 增量快照的核心是比较lucene segements不可变文件信息,每次创建快照时会建立一个IndexCommit提交点,包含seg…

javaweb员工健康管理监护系统

项目演示视频 (链接:https://pan.baidu.com/s/1WliYEUH4c0HVB7s0-1WDUA 提取码:1234 --来自百度网盘超级会员V5的分享) 该项目所用到技术 java ssh框架 3:该项目的用到的开发工具? eclipse和idea都可以、m…

Echo框架:高性能的Golang Web框架

Echo框架:高性能的Golang Web框架 在Golang的Web开发领域,选择一个适合的框架是构建高性能和可扩展应用程序的关键。Echo是一个备受推崇的Golang Web框架,以其简洁高效和强大功能而广受欢迎。本文将介绍Echo框架的基本特点、使用方式及其优势…

JVM学习-垃圾回收专题

目录 1.如何判断对象可以回收 1.1引用计数法 1.2可达性分析算法 1.3五种引用 1.4拓展:直接内存 2.垃圾回收算法 2.1标记清除算法 2.2标记整理算法 2.3复制 3.分代垃圾回收 3.垃圾回收器 3.1串行垃圾回收器 3.2吞吐量优先垃圾回收器 3.3响应时间优先垃圾回收器…

什么是雪花算法?

雪花算法(Snowflake Algorithm)是一种分布式ID生成算法,由Twitter公司开发并开源。它主要用于在分布式系统中生成全局唯一、趋势递增的ID。 雪花算法生成的ID是一个64位的长整数,该数字被划分为几部分: 符号位&#xf…

Qt 实现 Asterix 报文解析库

【写在前面】 最近工作中需要解析 Cat 21 和 Cat 62 的 ADS-B 数据 ( 自己的工作包含航空领域 )。 然后,因为整个 Asterix 协议类别非常之多,每个类别的版本也多,纯手工实现每个版本解析根本不现实 ( 然鹅公司之前的解析库就是这么做的且做的…

win10 + cpu + pycharm + mindspore

MindSpore是华为公司自研的最佳匹配昇腾AI处理器算力的全场景深度学习框架。 1、打开官网: MindSpore官网 2、选择以下选项: 3、创建conda 环境,这里python 选择3.9.0,也可以选择其他版本: conda create -c conda-…

智慧交通:构建智慧城市的重要一环

随着信息技术的飞速发展,智慧城市已成为现代城市发展的重要方向。作为智慧城市的重要组成部分,智慧交通以其高效、便捷、环保的特性,成为推动城市现代化进程的关键力量。本文将从智慧交通的概念、发展现状、面临挑战以及未来趋势等方面&#…

在一个程序页面中加几个字段用于增删改查

文章目录 前言一、单表步骤1:更新实体类步骤2:更新DAO层XML步骤3:更新Service实现类步骤4:更新Controller层步骤5:更新前端Vue模型和组件 二、多表步骤1:新程序的增删改查步骤2:老程序中新增实体…

学习python笔记:7,操作excel表格,生成柱状图,

注意: 注意xlsx的格式,wps一定另存为xlsx才可以,不然就出错。 操作表格 1,在终端里面安装openpyxl pip install openpyxl import openpyxl as xl from openpyxl.chart import BarChart,Reference#注意xlsx的格式,wps…

MySQL语法分类 DDL(1)

DDL(1)(操作数据库、表) 数据库操作(CRUD) C(Create):创建 //指定字符集创建 create database db_1 character set utf8;//避免重复创建数据库报错可以用一下命令 create database if not exists db_1 character set utf8;R(Retrieve):查询 //查询所…

【DiffusionModel系列】Sora揭底系列模型介绍 (VAE/DDPM/SD/DiT/Sora)

飞书PPT链接 简介 该文档介绍了几种深度学习模型,特别是那些在图像合成和处理方面有显著应用的模型。文档内容涉及变分自编码器(VAE)、去噪扩散概率模型(DDPM)、稳定扩散(Stable Diffusion)、…

物联网竞赛板CubMx全部功能简洁配置汇总

目录 前言:1、按键&LED灯配置:2、OLED配置:3、继电器配置:4、LORA模块配置:5、矩阵模块:6、串口模块:7、RTC配置:8、ADC模块配置:9、温度传感器模块:后续…

cartographer学习与使用

记录一下在配置和使用cartographer建图时遇到的各种问题吧。 我的数据 配置文件&#xff1a; my_rslidar.launch <launch> <param name"/use_sim_time" value"false" /> <!--启动建图节点--> <node name"cartographer_n…

旋转花键的制造工艺

旋转花键的制造工艺是一门精细的技术&#xff0c;涉及多个步骤和精细的操作&#xff0c;以确保最终产品的质量和性能&#xff0c;下面简单介绍下旋转花键的制造工艺。 1、原材料准备&#xff1a;制造旋转花键的核心是选择合适的材料&#xff0c;根据花键的规格和性能要求&#…